Effect of the Fresnel reflection of a water surface on Chlorophyll Fluorescence line height at approximately 761 nm
- Vol. 22, Issue 3, Pages: 424-431(2018)
Published: 2018-5 ,
Accepted: 4 December 2017
DOI: 10.11834/jrs.20187251
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 2018-5 ,
Accepted: 4 December 2017
扫 描 看 全 文
温颜沙, 邓建明, 毛志华, 石静, 周杨, 鲁婷, 陆应诚. 2018. 水面菲涅尔反射对~761 nm叶绿素荧光估算的影响. 遥感学报, 22(3): 424–431
Wen Y S, Deng J M, Mao Z H, Shi J, Zhou Y, Lu T and Lu Y C. 2018. Effect of the Fresnel reflection of a water surface on Chlorophyll Fluorescence line height at approximately 761 nm. Journal of Remote Sensing, 22(3): 424–431
叶绿素荧光是光合作用的有效探针,可用于海洋浮游植物的监测与定量评估。太阳诱导叶绿素荧光覆盖可见光—近红外650—800 nm,在~685 nm与~740 nm表现出两个形态不同的荧光峰特征。基于~685 nm荧光峰的叶绿素浓度反演算法较为成熟,但在高悬浮物和高叶绿素浓度的水体中,算法的有效性不足。基于叶绿素荧光在氧气吸收谱段(O
2
-A)的填充作用,水体遥感反射率光谱~761 nm峰值中包含有太阳诱导叶绿素荧光信号,能用于水体叶绿素浓度的估算,但该反射峰形态特征还取决于传感器的光谱分辨率。本研究基于不同光谱分辨率的大气吸收谱线特征,模拟了水体遥感反射率光谱(750—775 nm)上太阳诱导叶绿素荧光的信号响应特征;分析了利用遥感反射率(~761 nm)计算叶绿素荧光的原理,阐明了不同光谱分辨率条件下水体叶绿素荧光信号在反射光谱上的形态变化规律。采用水面以上测量法获取的离水光谱辐亮度,包含了水面的菲涅尔反射信号,由于真实的菲涅尔系数难以准确测量,这给基于~761 nm处遥感反射率峰值的荧光信号估算带来不确定性影响。研究表明,假定菲涅尔系数为0时,虽然~761 nm叶绿素荧光信号与其浓度具有较好的线性统计关系,但却带来较大的不确定性;这种不确定的影响,在低浓度叶绿素水体中表现明显,在高浓度叶绿素水体中,影响相对较小;准确估算菲涅尔系数,有助于减少这种不确定性影响。对基于遥感反射率~761 nm叶绿素荧光信号的深入探讨,将能推动未来水体叶绿素荧光的识别与利用。
Sunlight-Induced Chlorophyll Fluorescence (SICF) is an important optical probe for the investigation of the status of marine phytoplankton and has often been used to estimate chlorophyll concentration in natural waters. SICF covers the visible and near-infrared spectral range (650—800 nm) and shows two dominant peaks at approximately 685 nm (a sharp peak) and approximately 740 nm (a broad shoulder). SICF at approximately 685 nm has been widely used in the in situ measurements or remotely sensed optical imageries for the estimation of chlorophyll concentration
but it can be disturbed by complex water backgrounds. In the downwelling solar irradiance spectrum (
E
d
)
some of the narrow troughs in the spectral range of 700—800 nm are caused by the absorption of oxygen (O
2
-A) in the Earth’s atmosphere. Upwelling water-leaving radiance includes the elastic backscattering signal (
$$ L_{\rm{w}}^{\rm{{\small{E}}}} $$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=8284617&type=
) and SICF (
L
f
) from water. Therefore
a narrow reflectance peak at approximately 761 nm can be observed in the remote sensing reflectance (
R
rs
) of natural waters because of the fill-in effect on the oxygen absorption feature. Then
the fluorescence line height (FLH) at approximately 761 nm can be utilized to estimate the chlorophyll concentration of natural waters. FLH (~761 nm) is affected by the Fresnel reflection radiance of the water surface when the above mentioned water method is used to collect the spectra. The spectral forms are shaped by sensors with different spectral resolutions. In this study
the influence of the spectral resolution of sensors on the shape of the spectral curve at approximately 761 nm is modeled with MODTRAN 4.0 software
given the required parameters (e.g.
remote sensing reflectance of natural water and upwelling SICF radiance). Then
different Fresnel coefficients are used in FLH (~761 nm) calculation to determine the effect of Fresnel reflection on the inversion of chlorophyll concentration through SICF at approximately 761 nm. Results show that the position of the main peak shifts toward a long wavelength
and the shape changes as the spectral resolution decreases. In the analysis of the effect of Fresnel reflection
the ratio of the root-mean-square error and the difference in FLH (ΔFLH=FLH(~761 nm)
max
–FLH(~761 nm)
min
) indicate that the appropriate Fresnel reflection coefficient can reduce the effect of the Fresnel reflection of the water surface on FLH (~761 nm). Nevertheless
the SICF in the near-infrared spectral region at approximately 761 nm needs to be further analyzed because it may provide different methods for the investigation of the photosynthesis of phytoplankton in natural waters.
太阳诱导叶绿素荧光海洋光学遥感反射率菲涅尔反射填充效应O2-A波段
sunlight induced chlorophyll fluorescenceocean opticremote sensing reflectanceFresnel reflectionfill-in effectO2-A band
Abbott M R, Brink K H, Booth C R, Blasco D, Swenson M S, Davis C O and Codispoti L A. 1995. Scales of variability of bio-optical properties as observed from near-surface drifters. Journal of Geophysical Research: Oceans, 100(C7): 13345–13367
Abbott M R and Letelier R M. 1999. Algorithm Theoretical Basis Document Chlorophyll Fluorescence (MODIS Product Number 20). Greenbelt, Md: NASA: 5–38
Al Shehhi M R, Gherboudj I, Zhao J, Mezhoud N and Ghedira H. 2013. Evaluating the performance of MODIS FLH ocean color algorithm in detecting the harmful algae blooms in the Arabian gulf and the gulf of Oman//Proceedings of 2013 Oceans-San Diego. San Diego, CA: IEEE: 1–7 [DOI: 10.23919/OCEANS.2013.6741163]
Alonso L, Gomez-Chova L, Vila-Frances J, Amoros-Lopez J, Guanter L, Calpe J and Moreno J. 2008. Improved fraunhofer line discrimination method for vegetation fluorescence quantification. IEEE Geoscience and Remote Sensing Letters, 5(4): 620–624
Chamberlin W S, Booth C R, Kieffer D A, Morrow J H and Murphy R C. 1990. Evidence for a simple relationship between natural fluorescence, photosynthesis and chlorophyll in the sea. Deep Sea Research Part A. Oceanographic Research Papers, 37(6): 951–973
Department of Commerce, NOAA, NOS and SP. 1998. Estuarine Bathymetric Digital Elevation Models (30 Meter and 3 Arc Second Resolution) Derived from Source Hydrographic Survey Soundings Collected by NOAA[EB/OL]. Silver Spring, MD: NOAA’s Ocean Service, Special Projects (SP). [2015-01-22].http://estuarinebathymetry.noaa.gov/http://estuarinebathymetry.noaa.gov/
Fischer J and Kronfeld U. 1990. Sun-stimulated chlorophyll fluorescence 1: influence of oceanic properties. International Journal of Remote Sensing, 11(12): 2125–2147
Fisher T R, Peele E R, Ammerman J W and Harding L W Jr. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Marine Ecology Progress Series, 82: 51–63
Gower J and King S. 2007. Validation of chlorophyll fluorescence derived from MERIS on the west coast of Canada. International Journal of Remote Sensing, 28(3/4): 625–635
Gower J F R and Borstad G A. 1990. Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer. International Journal of Remote Sensing, 11(2): 313–320
Haltrin V I, McBride W E and Weidemann A D. 2000. Fresnel reflection by wavy sea surface//Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium. Honolulu, HI: IEEE, 5: 1863–1865
Hu C M, Muller-Karger F E, Taylor C, Carder K L, Kelble C, Johns E and Heil C A. 2005. Red tide detection and tracing using MODIS fluorescence data: a regional example in SW Florida coastal waters. Remote Sensing of Environment, 97(3): 311–321
Kiefer D A and Reynolds R A. 1992. Advances in understanding phytoplankton fluorescence and photosynthesis//Falkowski P G, Woodhead A D and Vivirito K, eds. Primary Productivity and Biogeochemical Cycles in the Sea. New York: Springer: 155–174
Krause G H and Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42: 313–349
Letelier R M and Abbott M R. 1996. An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS). Remote Sensing of Environment, 58(2): 215–223
Lu Y C, Li L H, Hu C M, Li L, Zhang M W, Sun S J and Lv C G. 2016. Sunlight induced chlorophyll fluorescence in the near-infrared spectral region in natural waters: interpretation of the narrow reflectance peak around 761 nm. Journal of Geophysical Research: Oceans, 121(7): 5017–5029
Maxwell K and Johnson G N. 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51(345): 659–668
Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R and Moreno J. 2009. Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sensing of Environment, 113(10): 2037–2051
O’Malley R T, Behrenfeld M J, Westberry T K, Milligan A J, Shang S L and Yan J. 2014. Geostationary satellite observations of dynamic phytoplankton photophysiology. Geophysical Research Letters, 41(14): 5052–5059
Stegmann P M, Lewis M R, Davis C O and Cullen J J. 1992. Primary production estimates from recordings of solar-stimulated fluorescence in the Equatorial Pacific at 150°W. Journal of Geophysical Research: Oceans, 97(C1): 627–638
唐军武, 田国良, 汪小勇, 王晓梅, 宋庆君. 2004. 水体光谱测量与分析Ⅰ: 水面以上测量法. 遥感学报, 8(1): 37–44
Tang J W, Tian G L, Wang X Y, Wang X M and Song Q J. 2004. The methods of water spectra measurement and analysis I: above-water method. Journal of Remote Sensing, 8(1): 37–44 (
Wolanin A, Dinter T, Rozanov V, Noël S, Vountas M, Burrows J P and Bracher A. 2014. Marine fluorescence from high spectrally resolved satellite measurements//Proceedings of EGU General Assembly. Vienna: EGU: 16
Zarco-Tejada P J, Berni J A J, Suárez L, Sepulcre-Cantó G, Morales F and Miller J R. 2009. Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sensing of Environment, 113(6): 1262–1275
相关作者
相关机构