Temporal and spatial relationship between fine particle aerosols and short-lived trace gas in Chinese ocean
- Vol. 24, Issue 2, Pages: 173-181(2020)
Published: 07 February 2020
DOI: 10.11834/jrs.20208231
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 February 2020 ,
扫 描 看 全 文
徐彬仁,魏瑗瑗,张晗,宋毅,杨支中.2020.中国海洋上空细粒子气溶胶与短寿命痕量气体的时空关系.遥感学报,24(2): 173-181Xu B R,Wei Y Y,Zhang H,Song Y and Yang Z Z. 2020. Temporal and spatial relationship between fine particle aerosols and short-lived trace gas in Chinese ocean. Journal of Remote Sensing (Chinese), 24(2): 173-181[DOI:10.11834/jrs.20208231]
XU Binren,WEI Yuanyuan,ZHANG Han,SONG Yi,YANG Zhizhong. 2020. Temporal and spatial relationship between fine particle aerosols and short-lived trace gas in Chinese ocean. National Remote Sensing Bulletin. 24(2): 173-181
定量分析气溶胶与痕量气体之间的时空变化关系有助于进一步研究气粒转化。本文采用2006年—2015年MODIS气溶胶光学厚度(AOD)、细粒子模态比(FMF)和OMI痕量气体(SO
2
、NO
2
和HCHO)数据,对黄海、东海和南海区域上空的细粒子气溶胶与痕量气体进行定量分析。先对气溶胶和痕量气体作均值分析发现:AOD
fine
、SO
2
、NO
2
和HCHO的均值在黄海、南海、东海均依次减小;再对气溶胶对痕量气体的敏感度分析发现:黄海地区的AOD
fine
对SO
2
最敏感,敏感度为0.424,这与中国东部沿海城市的人为排放有关;而东海和南海地区对HCHO的敏感度较高,依次为0.664和0.545,主要受东南亚和中国南方地区生物质燃烧影响。最后,对3个区域的气溶胶与痕量气体按季节作相关性分析发现:黄海地区AOD
fine
在夏秋两季与SO
2
的相关性较强(
R
>
0.5),主要由于夏秋两季的温湿度大,利于发生气—粒转化;东海地区夏季HCHO与AOD
fine
相关性较明显(
R
=0.57);南海春季HCHO与AOD
fine
相关性较好(
R
=0.57),呈现出区域与季节性的变化。最终发现,气溶胶与痕量气体随着时空变化存在相关关系。
Aerosols have important effects on global energy balance
cloud properties
rainfall frequency
and atmospheric circulation. To understand the impact of aerosols on climate change
this paper explores the quantitative relationship between fine particle aerosols and gases.Aerosol Optical Depth (AOD)
Fine Mode Fraction (FMF) from MODIS
and trace gas (SO
2
NO
2
and HCHO) from OMI were used to analyze the quantitative relationship between the fine aerosols and trace gases over the Yellow Sea
East China Sea
and South China Sea between 2006 and 2015.First
the mean values of the aerosols and trace gases were analyzed. The mean values of AOD
fine
SO
2
NO
2
and HCHO decreased orderly in the Yellow Sea
South China Sea
and East China Sea all decreased. Meanwhile
the sensitivity analysis of the relationship between aerosols and trace gases revealed that: AOD
fine
is most sensitive to SO
2
with a sensitivity of 0.424
which may be ascribed to the anthropogenic emissions from the coastal cities of Eastern China. Meanwhile
East China Sea and South China Sea demonstrate high sensitivity to HCHO (0.664 and 0.545
respectively)
which can be ascribed to the biomass combustion in Southeast Asia and Southern China. The seasonal correlation analysis of aerosols and trace gases in these three regions reveal that the AOD
fine
in the Yellow Sea has a strong correlation with SO
2
during summer and autumn (
R
>
0.5) mainly due to the high temperature and humidity. A significant correlation is observed between HCHO and AOD
fine
was significant in the East China Sea (
R
=0.57)
and a relatively good correlation is observed between HCHO and AOD
fine
in the South China Sea was relatively good (
R
=0.57) due to regional and seasonal changes.In sum
fine particle modal aerosol has a significant correlation with trace gases
and such relationship provides a scientific basis for understanding the aerosol processes
especially those of artificial aerosols dominated by fine particles.
遥感人为排放AODfine气溶胶痕量气体中国海域时空变化
remote sensinganthropogenic emissionsAODfineaerosolstrace gasesChina’s neighboring seaspatiotemporal change
Baek K H, Kim J H, Park R J, Chance K and Kurosu T P. 2014. Validation of OMI HCHO data and its analysis over Asia. Science of the Total Environment, 490: 93-105 [DOI: 10.1016/j.scitotenv.2014.04.108http://dx.doi.org/10.1016/j.scitotenv.2014.04.108]
Chen D D, Guo J P, Wang H Q, Li J, Min M, Zhao W H and Yao D. 2018. The cloud top distribution and diurnal variation of clouds over East Asia: preliminary results from Advanced Himawari Imager. Journal of Geophysical Research: Atmospheres, 123(7): 3724-3739 [DOI: 10.1002/2017JD028044http://dx.doi.org/10.1002/2017JD028044]
De Smedt I, Müller J F, Stavrakou T, van der A R, Eskes H and Van Roozendael M. 2008. Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics, 8(16): 4947-4963 [DOI: 10.5194/acp-8-4947-2008http://dx.doi.org/10.5194/acp-8-4947-2008]
Dickerson R R, Li C, Li Z, Marufu L T, Stehr J W, McClure B, Krotkov N, Chen H, Wang P, Xia X, Ban X, Gong F, Yuan J and Yang J. 2007. Aircraft observations of dust and pollutants over northeast China: insight into the meteorological mechanisms of transport. Journal of Geophysical Research: Atmospheres, 112(D24): D24S90 [DOI: 10.1029/2007JD008999http://dx.doi.org/10.1029/2007JD008999]
Gao Y B, Mei S Y, Ma J J, Wu S C, Zhang H H and Xu D D. 2016. Spatiotemporal variations of SO2 over China by OMI observations during 2005~2012. Journal of Atmospheric and Environmental Optics, 11(4): 299-312
高一博, 梅世玉, 麻金继, 吴时超, 张洪海, 许丹丹. 2016. 基于OMI数据2005~2012年中国区域SO2时空变化特征研究. 大气与环境光学学报, 11(4): 299-312 [DOI: 10.3969/j.issn.1673-6141.2016.04.008http://dx.doi.org/10.3969/j.issn.1673-6141.2016.04.008]
Guo J P, Miao Y C, Zhang Y, Liu H, Li Z Q, Zhang W C, He J, Lou M Y, Yan Y, Bian L G and Zhai P M. 2016. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmospheric Chemistry and Physics, 16(20): 13309-13319 [DOI: 10.5194/acp-16-13309-2016http://dx.doi.org/10.5194/acp-16-13309-2016]
Heath D F, Krueger A J, Roeder H A and Henderson B D. 1975. The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus G. Optical Engineering, 14(4): 144323 [DOI: 10.1117/12.7971839http://dx.doi.org/10.1117/12.7971839]
Itahashi S, Uno I, Yumimoto K, Irie H, Osada K, Ogata K, Fukushima H, Wang Z and Ohara T. 2012. Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010. Atmospheric Chemistry and Physics, 12(5): 2631-2640 [DOI: 10.5194/acp-12-2631-2012http://dx.doi.org/10.5194/acp-12-2631-2012]
Jones T A and Christopher S A. 2011. A reanalysis of MODIS fine mode fraction over ocean using OMI and daily GOCART simulations. Atmospheric Chemistry and Physics, 11(12): 5805-5817 [DOI: 10.5194/acp-11-5805-2011http://dx.doi.org/10.5194/acp-11-5805-2011]
Kang N, Kumar K R, Yin Y, Diao Y W and Yu X N. 2015. Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data (2003-2013): impact on cloud formation and climate change. Aerosol and Air Quality Research, 15(3): 958-973 [DOI: 10.4209/aaqr.2014.08.0168http://dx.doi.org/10.4209/aaqr.2014.08.0168]
King M D, Menzel W P, Kaufman Y J, Tanre D, Platnick S, Ackerman S A, Remer L A, Pincus R and Hubanks P A. 2003. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 442-458 [DOI: 10.1109/TGRS.2002.808226http://dx.doi.org/10.1109/TGRS.2002.808226]
Levy R C, Remer L A, Mattoo S, Vermote E F and Kaufman Y J. 2007. Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112(D13): D13211 [DOI: 10.1029/2006JD007811http://dx.doi.org/10.1029/2006JD007811]
Levy R C, Remer L A, Kleidman R G, Mattoo S, Ichoku C, Kahn R and Eck T F. 2010. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21): 10399-10420 [DOI: 10.5194/acp-10-10399-2010http://dx.doi.org/10.5194/acp-10-10399-2010]
Li Z Q, Niu F, Lee K H, Xin J Y, Hao W M, Nordgren B, Wang Y S and Wang P C. 2007. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. Journal of Geophysical Research: Atmospheres, 112(D22): D22S07 [DOI: 10.1029/2007JD008479http://dx.doi.org/10.1029/2007JD008479]
Lohmann U and Feichter J. 2005. Global indirect aerosol effects: a review. Atmospheric Chemistry and Physics, 5(3): 715-737 [DOI: 10.5194/acp-5-715-2005http://dx.doi.org/10.5194/acp-5-715-2005]
Mi W, Li Z Q, Xia X G, Holben B, Levy R, Zhao F S, Chen H B and Cribb M. 2007. Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two aerosol robotic network stations in China. Journal of Geophysical Research: Atmospheres, 112(D22): D22S08 [DOI: 10.1029/2007JD008474http://dx.doi.org/10.1029/2007JD008474]
Niu F and Li Z Q. 2012. Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18): 8491-8498 [DOI: 10.5194/acp-12-8491-2012http://dx.doi.org/10.5194/acp-12-8491-2012]
Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X and Hayasaka T. 2007. An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmospheric Chemistry and Physics, 7(16): 4419-4444 [DOI: 10.5194/acp-7-4419-2007http://dx.doi.org/10.5194/acp-7-4419-2007]
Peng J, Li Z Q, Zhang H, Liu J J and Gribb M. 2016. Systematic changes in cloud radiative forcing with aerosol loading for deep clouds in the tropics. Journal of the Atmospheric Sciences, 73(1): 231-249 [DOI: 10.1175/JAS-D-15-0080.1http://dx.doi.org/10.1175/JAS-D-15-0080.1]
Penning de Vries M J M, Beirle S, Hörmann C, Kaiser J W, Stammes P, Tilstra L G, Tuinder O N E and Wagner T. 2015. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances. Atmospheric Chemistry and Physics, 15(18): 10597-10618 [DOI: 10.5194/acp-15-10597-2015http://dx.doi.org/10.5194/acp-15-10597-2015]
Quaas J, Boucher O, Bellouin N and Kinne S. 2008. Satellite-based estimate of the direct and indirect aerosol climate forcing. Journal of Geophysical Research: Atmospheres, 113(D5): D05204 [DOI: 10.1029/2007JD008962http://dx.doi.org/10.1029/2007JD008962]
Remer L A, Kaufman Y J, Tanré D, Mattoo S, Chu D A, Martins J V, Li R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E and Holben B N. 2005. The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 62(4): 947-973 [DOI: 10.1175/JAS3385.1http://dx.doi.org/10.1175/JAS3385.1]
Remer L A, Kleidman R G, Levy R C, Kaufman Y J, Tanré D, Mattoo S, Martins J V, Ichoku C, Koren I, Yu H B and Holben B N. 2008. Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research: Atmospheres, 113(D14): D14S07 [DOI: 10.1029/2007JD009661http://dx.doi.org/10.1029/2007JD009661]
Shang X J. 2013. Studies on Reactions of Nitric Oxides with Volatile Organic Compounds in Atmosphere. Lanzhou: Lanzhou University
尚筱洁. 2013. 大气中挥发性有机化合物与氮氧化物的反应研究. 兰州: 兰州大学
Sreekanth V. 2014. On the classification and sub-classification of aerosol key types over south central peninsular India: MODIS–OMI algorithm. Science of the Total Environment, 468-469: 1086-1092 [DOI: 10.1016/j.scitotenv.2013.09.038http://dx.doi.org/10.1016/j.scitotenv.2013.09.038]
Streets D G, Wu Y and Chin M. 2006. Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophysical Research Letters, 33(15): L15806 [DOI: 10.1029/2006GL026471http://dx.doi.org/10.1029/2006GL026471]
Streets D G, Yan F, Chin M, Diehl T, Mahowald N, Schultz M, Wild M, Wu Y and Yu C. 2009. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006. Journal of Geophysical Research: Atmospheres, 114(D10): D00D18 [DOI: 10.1029/2008JD011624http://dx.doi.org/10.1029/2008JD011624]
Tang J P, Wang P C, Mickley L J, Xia X G, Liao H, Yue X, Sun L and Xia J R. 2014. Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data. Atmospheric Environment, 84: 244-253 [DOI: 10.1016/j.atmosenv.2013.08.024http://dx.doi.org/10.1016/j.atmosenv.2013.08.024]
Veefkind J P, Boersma K F, Wang J, Kurosu T P, Krotkov N, Chance K and Levelt P F. 2011. Global satellite analysis of the relation between aerosols and short-lived trace gases. Atmospheric Chemistry and Physics, 11(3): 1255-1267 [DOI: 10.5194/acp-11-1255-2011http://dx.doi.org/10.5194/acp-11-1255-2011]
Xie Y S, Li Z Q, Zhang Y X, Zhang Y, Li D H, Li K T, Xu H, Zhang Y, Wang Y Q, Chen X F, Schauer J J and Bergin M. 2017. Estimation of atmospheric aerosol composition from ground-based remote sensing measurements of Sun-sky radiometer. Journal of Geophysical Research: Atmospheres, 122(1): 498-518 [DOI: 10.1002/2016JD025839http://dx.doi.org/10.1002/2016JD025839]
Yao L, Lü N and Shi H D. 2012. Study on spatial-temporal variations in total NO2 column amounts over China using SCIAMACHY data. Research of Environmental Sciences, 25(4): 419-424
姚凌, 吕宁, 师华定. 2012. 利用SCIAMACHY遥感资料研究我国NO2柱浓度及其时空分布. 环境科学研究, 25(4): 419-424
Yu H B, Fu R, Dickinson R E, Zhang Y, Chen M X and Wang H. 2007. Interannual variability of smoke and warm cloud relationships in the Amazon as inferred from MODIS retrievals. Remote Sensing of Environment, 111(4): 435-449 [DOI: 10.1016/j.rse.2007.04.003http://dx.doi.org/10.1016/j.rse.2007.04.003]
Zhang Y and Li Z Q. 2013. Estimation of PM2.5 from fine-mode aerosol optical depth. Journal of Remote Sensing, 17(4): 929-943
张莹, 李正强. 2013. 利用细模态气溶胶光学厚度估计PM2.5. 遥感学报, 17(4): 929-943 [DOI: 10.11834/jrs.20133063http://dx.doi.org/10.11834/jrs.20133063]
Zhang Y and Li Z Q. 2015. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sensing of Environment, 160: 252-262 [DOI: 10.1016/j.rse.2015.02.005http://dx.doi.org/10.1016/j.rse.2015.02.005]
相关文章
相关作者
相关机构