Evaluation of GF-5 AHSI on-orbit instrument radiometric performance
- Vol. 24, Issue 4, Pages: 352-359(2020)
Published: 07 April 2020
DOI: 10.11834/jrs.20209258
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 April 2020 ,
扫 描 看 全 文
刘银年,孙德新,曹开钦,刘书锋,柴孟阳,梁建,原娟.2020.高分五号可见短波红外高光谱相机在轨辐射性能评估.遥感学报,24(4): 352-359
LIU Yinnian,SUN Dexin,CAO Kaiqin,LIU Shufeng,CHAI Mengyang,LIANG jian,YUAN Juan. 2020. Evaluation of GF-5 AHSI on-orbit instrument radiometric performance. Journal of Remote Sensing(Chinese). 24(4): 352-359
对遥感器及其图像的在轨辐射性能(信噪比、相对辐射定标精度、绝对辐射定标精度和动态范围)评估是检验遥感器定量应用能力的重要任务之一。本文结合高分五号卫星可见短波红外高光谱相机AHSI(the Advanced Hyperspectral Imager)在轨性能评估任务,依据卫星发射以来的在轨测试数据,介绍了AHSI相机在轨辐射性能评估的原理、方法及相应测试情况。测试结果表明:AHSI信噪比可见近红外最高达到近700,短波红外最高达到近500;相对辐射定标精度误差小于0.5%,星上绝对辐射定标不确定度小于3%,场地绝对辐射定标真实性检验精度误差小于5%;动态范围在轨可见短波均可以256档增益精细调整。AHSI在轨辐射性能良好且稳定,能够有效支持后续定量化应用需求。
The Advanced Hyperspectral Imager (AHSI)
one of the six payloads on China’s GF-5 satellite that was launched on May 9
2018
is a visible/short-wave infrared hyperspectral imager built by Shanghai Institute of Technical Physics (SITP)
Chinese Academy of Sciences (CAS). In order to verify and validate the on-orbit radiometric performance of AHSI
and improve quantitative application of the AHSI data
the instrument conducts on-orbit radiometric characterizations from June 2018 to April 2019. Solar calibration and vicarious calibration were both utilized.
Observational and calibration data of well-known calibration sites
such as
Dunhuang and Baotou calibration field in China
were acquired and analyzed to determine whether the pre-flight characterization was still applicable to on-orbit operations. These data was used to measure specific instrument parameters
such as
in corresponding order
(1) Signal to Noise Ratio (SNR)
(2) relative and absolute radiometric calibration accuracy
(3) uncertainty of on orbit absolute radiometric calibration
(4) validation accuracy of site absolute radiometric calibration
(5) dynamic range and (6) radiometric performance stability. The definition of these parameters as well as the acquisition of the coefficients of relative and absolute radiometric calibration has been illustrated.
Results show that the SNR of AHSI reaches up to 700 at a wavelength of about 500 nm
and 500 at a wavelength of about 1500 nm
the error of relative and absolute radiometric calibration are smaller than 0.5% and 3%
respectively
the uncertainty of on orbit absolute radiometric calibration is within 2.59%(VNIR) and 2.68%(SWIR)
the error of the validation of site absolute radiometric calibration is smaller than 5%
and the dynamic range can be fined with 256 gain. In particular
with the image motion compensating
the integration time can be prolonged and the SNR can be further increased
therefore
object/region with weak signal
such as
the sea/lake
the Antarctic and the Arctic can also be observed. In addition
the variation of the dark level
SNR
and the coefficients of relative radiometric calibration from September 2018 to March 2019 are all much less than 1%
meaning that the radiometric response and noise value are stable
which in turn reflects that the radiometric performance of AHSI is stable.
The on orbit characterization of GF-5/AHSI lasted for seven months and with continuing assessment of the instrument throughout the first year of operations. As it can be seen
the AHSI has good and stable on-orbit radiometric performance
i.e.
high SNR
high calibration accuracy
and high consistency. Therefore
the data of AHSI is highly reliable and can be used in quantitative applications.
遥感高分五号(GF-5)高光谱相机在轨测试辐射性能信噪比辐射定标真实性检验动态范围
remote sensingGF-5 satellitehyperspectral imageron-orbit measurementsinstrument radiometric performancesignal to noise ratioradiometric calibrationvalidation experimentdynamic range
Beiso D. 2002. Overview of hyperion on-orbit instrument performance, stability , and artifacts//Proceedings of the 31st Applied Imagery Pattern Recognition Workshop. Washington, DC, USA: IEEE: 95-104 [DOI: 10.1109/AIPR.2002.1182260]
Biggar S F, Thome K J, Holmes J M, Kuester M A and Schowengerdt R A . 2001. In-flight radiometric and spatial calibration of EO-1 optical sensors//IEEE International Geoscience and Remote Sensing. Sydney, NSW, Australia: IEEE: 305-307 [DOI: 10.1109/IGARSS.2001.976139]
Chen Z C, Zhang B, Luo W F, Hu F C, Li J S, Liu X, Zhang L, Zhang H, Zhang L M and Chi Y B . 2008. On-orbit performance assessment of Beijing-1 microsatellite sensors. Journal of Remote Sensing, 12(3): 468-476
陈正超, 张兵, 罗文斐, 胡方超, 李俊生, 刘翔, 张靓, 张浩, 张黎明, 迟耀斌 . 2008. 北京1号小卫星遥感器性能在轨测试. 遥感学报, 12(3): 468-476) [DOI: 10.3321/j.issn:1007-4619.2008.03.013http://dx.doi.org/10.3321/j.issn:1007-4619.2008.03.013 ]
He H Y, Wang X Y and Fu X K . 2008. Study on the designing of the dynamic range of remote satellite’s CCD camera. Spacecraft Recovery and Remote Sensing, 29(1): 39-42, 49
何红艳, 王小勇, 付兴科 . 2008. 遥感卫星CCD相机的动态范围设计考虑. 航天返回与遥感, 29(1): 39-42, 49
Hu B L, Zhang J, Cao K Q, Hao S J, Sun D X and Liu Y N . 2018. Research on the Etalon effect in dispersive hyperspectral VNIR imagers using back-illuminated CCDs. IEEE Transactions on Geoscience and Remote Sensing, 56(9): 5481-5494 [DOI: 10.1109/TGRS.2018.2818258http://dx.doi.org/10.1109/TGRS.2018.2818258 ]
Hu Y F and Zhang Y F . 2007. Analysis of relative radiometric calibration accuracy of space camera. Spacecraft Recovery and Remote Sensing, 28(4): 54-57
胡永富, 张宇烽 . 2007. 空间相机相对辐射定标精度分析. 航天返回与遥感, 28(4): 54-57) [DOI: 10.3969/j.issn.1009-8518.2007.04.011http://dx.doi.org/10.3969/j.issn.1009-8518.2007.04.011 ]
Huang H L, Yi W N, Qiao Y L and Du L L . 2012. On orbit radiometric calibration for Mapping Satellite-1 sensor. Journal of Remote Sensing, 16(S1): 22-27
黄红莲, 易维宁, 乔延利, 杜丽丽 . 2012. “天绘一号”卫星在轨辐射定标方法. 遥感学报, 16(增刊): 22-27) [DOI: 10.11834/jrs.20120005http://dx.doi.org/10.11834/jrs.20120005 ]
Jarecke P, Yokoyama K and Barry P . 2001. On-orbit radiometric calibration the hyperion instrument//IEEE International Geoscience and Remote Sensing (IGARSS). Sydney, NSW, Australia: IEEE: 2825-2827 [DOI: 10.1109/IGARSS.2001.978176]
Wan Z, Li B Y, Liu Z X, Liu H X and Ren J W . 2015. Spectral and radiometric calibrations for mapping satellite-1 camera. Optics and Precision Engineering, 23(7): 1867-1873
万志, 李葆勇, 刘则洵, 刘洪兴, 任建伟 . 2015. 测绘一号卫星相机的光谱和辐射定标. 光学与精密工程, 23(7): 1867-1873) [DOI: 10.3788/OPE.20152307.1867http://dx.doi.org/10.3788/OPE.20152307.1867 ]
Xu N, Hu X Q, Chen L, Zhang Y, Hu J Y and Sun L . 2014. On-orbit radiometric calibration accuracy of FY-3A MERSI thermal infrared channel. Spectroscopy and Spectral Analysis, 34(12): 3429-3434
徐娜, 胡秀清, 陈林, 张勇, 胡菊旸, 孙凌 . 2014. FY-3A/MERSI热红外通道在轨辐射定标精度评估. 光谱学与光谱分析, 34(12): 3429-3434) [DOI: 10.3964/j.issn.1000-0593(2014)12-3429-06http://dx.doi.org/10.3964/j.issn.1000-0593(2014)12-3429-06 ]
Zhang X W, Fu Q Y, Han Q J, Pan Z Q and Yang L . 2014. The field radiometric calibration and validation of ZY-3 multispectral sensor. Spectroscopy and Spectral Analysis, 34(9): 2476-2480
张学文, 傅俏燕, 韩启金, 潘志强, 杨磊 . 2014. 资源三号多光谱传感器场地辐射定标与验证. 光谱学与光谱分析, 34(9): 2476-2480) [DOI: 10.3964/j.issn.1000-0593(2014)09-2476-05http://dx.doi.org/10.3964/j.issn.1000-0593(2014)09-2476-05 ]
Zhang Y X, Liu Y and Ge W Q . 2010. Development and prospect of image motion compensation technology. Chinese Journal of Optics and Applied Optics, 3(2): 112-118
张玉欣, 刘宇, 葛文奇 . 2010. 像移补偿技术的发展与展望. 中国光学与应用光学, 3(2): 112-118) [DOI: 10.3969/j.issn.2095-1531.2010.02.003http://dx.doi.org/10.3969/j.issn.2095-1531.2010.02.003 ]
相关文章
相关作者
相关机构