Construction and validation of the TOA reflectance reference model for stable land surface targets by using Golmud Desert site as an example
- Vol. 27, Issue 5, Pages: 1099-1113(2023)
Published: 07 May 2023
DOI: 10.11834/jrs.20221655
扫 描 看 全 文

浏览全部资源
扫码关注微信
Published: 07 May 2023 ,
扫 描 看 全 文
宋培兰,马灵玲,赵永光,王宁,李婉,韩启金,刘耀开,姚微源,张贝贝,任璐,牛沂芳.2023.中国陆表稳定目标TOA反射率模型构建方法及验证——以格尔木沙地场景为例.遥感学报,27(5): 1099-1113
Song P L,Ma L L,Zhao Y G,Wang N,Li W,Han Q J,Liu Y K,Yao W Y,Zhang B B,Ren L and Niu Y F. 2023. Construction and validation of the TOA reflectance reference model for stable land surface targets by using Golmud Desert site as an example. National Remote Sensing Bulletin, 27(5):1099-1113
基于伪不变定标场(PICS)的大气层顶反射率(TOA)模型直接计算卫星过境入瞳辐亮度而无需地面测量,为高频次在轨辐射定标及长期性能监测提供了有效技术手段。然而由于严格的空间均匀性、时间稳定性和大气条件要求,现有的PICS定标场均分布在境外而难以满足多在境内成像的国产陆地卫星等定标需求。借鉴PICS的定标思路,本文开展了放宽场地、大气稳定性约束条件的中国陆表稳定目标TOA反射率模型构建方法研究。以中国西北区域的格尔木沙地稳定目标为例,将约束条件放宽至场地面积>3 km×3 km、云覆盖率<60%、空间均匀性<3%、时间稳定性<10%(11年),利用11年的Aqua/MODIS与ECMWF再分析资料分析观测几何及大气参数对TOA反射率的规律性影响,引入地表/大气辐射传输模型中定义的散射角,进一步表征TOA反射率模型中地表—大气间多次散射贡献,构建了一种适用于中国陆表稳定目标的TOA反射率模型。该模型系统偏差小于-0.10%,均方根误差小于0.0084;将Sentinel-2A/B MSI和Landsat 8 OLI的TOA反射率与本文模型计算TOA反射率进行比较,模型计算TOA反射率与Sentinel2A/B MSI观测TOA反射率的平均相对误差小于1.44%,标准差小于1.59%;与Landsat 8 OLI观测TOA反射率的平均相对误差小于1.77%,标准差小于2.11%。验证结果表明本文提出模型的计算值与卫星观测值具有较高的一致性和稳定性,能够应用于其他太阳反射谱段卫星载荷的在轨辐射定标和长期辐射特性监测。
The TOA reflectance model based on Pseudo-Invariant Calibration Sites (PICS) can directly calculate the apparent radiance of a satellite sensor without ground measurement
thus providing an effective technical approach for high-frequency
in-orbit radiometric calibration and long-term satellite performance monitoring. However
due to the strict requirements in spatial uniformity
time stability
and atmospheric conditions
existing PICS calibration sites are all distributed abroad
and meeting the calibration requirements of Chinese land satellites
which are mostly for imaging in China
is difficult. Using the radiometric calibration idea of PICS
this study investigated the construction model of Top of Atmosphere (TOA) reflectance for inland surface stable targets with relaxed sites and atmospheric stability constraints. With the stable target of Golmud Desert in the northwest region as an example
the constraints were relaxed as follows: site area greater than 3 km × 3 km
cloud coverage less than 60%
spatial uniformity less than 3%
and temporal stability less than 10% (11 years). Then
Aqua/MODIS and European Center for Medium-range Weather Forecasting reanalysis data of 11 years were used to analyze the regularity of the observed geometry and atmospheric parameters in TOA reflectance
and the scattering angle defined in the surface/atmospheric radiation transmission model was introduced to further characterize the multiple scattering contribution between the surface and atmosphere in the TOA reflectance model. Afterward
a TOA reflectance model suitable for inland stable targets was proposed. The averaged bias and root mean square error of the model were less than 0.10% and 0.0084
respectively. In addition
the TOA reflectance directly observed by Sentinel-2A/B MSI and Landsat 8 OLI were compared with the TOA reflectance calculated by the proposed model. The average relative error between the TOA reflectance calculated by the model and the observations of Sentinel-2A/B MSI was less than 1.44%
and the standard deviation of the relative error did not exceed 1.59%. The average relative error with Landsat 8 OLI observations was less than 1.77%
and the standard deviation of the relative error did not exceed 2.11%. The validation results showed that the calculated TOA reflectance values of the proposed model had high consistency and stability with the satellite observations. Thus
the model can be applied to the on-orbit radiometric calibration and long-term radiation characteristic monitoring of other satellite payloads in the solar reflection spectrum.
陆表稳定目标辐射定标伪不变定标场TOA反射率观测几何ECMWF
inland surface stable targetradiometric calibrationpseudo-invariant calibration sitesTOA reflectanceobservation geometryECMWF
Bacour C, Briottet X, Bréon F M, Viallefont-Robinet F and Bouvet M. 2019. Revisiting pseudo invariant calibration sites (PICS) over sand deserts for vicarious calibration of optical imagers at 20 km and 100 km scales. Remote Sensing, 11(10): 1166 [DOI: 10.3390/rs11101166http://dx.doi.org/10.3390/rs11101166]
Chander G, Xiong X X, Choi T and Angal A. 2010. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sensing of Environment, 114(4): 925-939 [DOI: 10.1016/j.rse.2009.12.003http://dx.doi.org/10.1016/j.rse.2009.12.003]
He L L. 2020. Selection, Evaluation and Radiometric Calibration Application of Pseudo-Invariant Calibration Sites (PICS) in Northwest China. Beijing: Chinese Academy of Meteorological Sciences: 14-18
何灵莉. 2020. 中国西北准不变定标场(PICS)的选取评价和辐射定标应用. 北京: 中国气象科学研究院: 14-18 [DOI: 10.27631/d.cnki.gzqky.2020.000014http://dx.doi.org/10.27631/d.cnki.gzqky.2020.000014]
Helder D, Thome K J, Mishra N, Chander G, Xiong X X, Angal A and Choi T. 2013. Absolute radiometric calibration of landsat using a pseudo invariant calibration site. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1360-1369 [DOI: 10.1109/TGRS.2013.2243738http://dx.doi.org/10.1109/TGRS.2013.2243738]
Kim W, Cao C Y and Liang S L. 2014. Assessment of radiometric degradation of FY-3A MERSI reflective solar bands using TOA reflectance of pseudoinvariant calibration sites. IEEE Geoscience and Remote Sensing Letters, 11(4): 793-797 [DOI: 10.1109/LGRS.2013.2279134http://dx.doi.org/10.1109/LGRS.2013.2279134]
Lachérade S, Fougnie B, Henry P and Gamet P. 2013. Cross calibration over desert sites: description, methodology, and operational implementation. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1098-1113 [DOI: 10.1109/TGRS.2012.2227061http://dx.doi.org/10.1109/TGRS.2012.2227061]
Liou K N. 2002. An Introduction to Atmospheric Radiation. 2nd ed. San Diego, California: Academic Press: 106-108
Liu Q Y, Yu T and Gao H L. 2019. Radiometric cross-calibration of GF-1 PMS sensor with a new BRDF model. Remote Sensing, 11(6): 707 [DOI: 10.3390/rs11060707http://dx.doi.org/10.3390/rs11060707]
Mishra N, Helder D, Angal A, Choi J and Xiong X X. 2014. Absolute calibration of optical satellite sensors using Libya 4 pseudo invariant calibration site. Remote Sensing, 6(2): 1327-1346 [DOI: 10.3390/rs6021327http://dx.doi.org/10.3390/rs6021327]
Neigh C S R, McCorkel J, Campbell P K E, Ong L, Ly V, Landis D and Middleton E M. 2016. Monitoring orbital precession of EO-1 hyperion with three atmospheric correction models in the Libya-4 PICS. IEEE Geoscience and Remote Sensing Letters, 13(12): 1797-1801 [DOI: 10.1109/LGRS.2016.2612539http://dx.doi.org/10.1109/LGRS.2016.2612539]
Raut B, Kaewmanee M, Angal A, Xiong X X and Helder D. 2019. Empirical absolute calibration model for multiple pseudo-invariant calibration sites. Remote Sensing, 11(9): 1105 [DOI: 10.3390/rs11091105http://dx.doi.org/10.3390/rs11091105]
Wang L, Hu X Q and Chen L. 2017. Assessment of BRDF effect of Kunlun Mountain glacier on Tibetan Plateau as a potential pseudo-invariant calibration site//Sensors, Systems, and Next-Generation Satellites. Warsaw, Poland: SPIE: 424-431 [DOI: 10.1117/12.2278203http://dx.doi.org/10.1117/12.2278203]
Wang S S, Xiang J M, Zhu S Y and Chen B Y. 2020. Cross radiation calibration for blue channel of FY4A AGRI sensor by using MODIS data. Remote Sensing Information, 35(6): 115-121
王诗圣, 向嘉敏, 祝善友, 陈博洋. 2020. 利用MODIS数据对FY4A AGRI传感器蓝光通道交叉辐射定标. 遥感信息, 35(6): 115-121 [DOI: 10.3969/j.issn.1000-3177.2020.06.017http://dx.doi.org/10.3969/j.issn.1000-3177.2020.06.017]
Yan G J, Jiang H L, Yan K, Cheng S Y, Song W J, Tong Y Y, Liu Y N, Qi J B, Mu X H, Zhang W M, Xie D H and Zhou H M. 2021. Review of optical multi-angle quantitative remote sensing. National Remote Sensing Bulletin, 25(1): 83-108
阎广建, 姜海兰, 闫凯, 程诗宇, 宋婉娟, 童依依, 刘雅楠, 漆建波, 穆西晗, 张吴明, 谢东辉, 周红敏. 2021. 多角度光学定量遥感. 遥感学报, 25(1): 83-108 [DOI: 10.11834/jrs.20218355http://dx.doi.org/10.11834/jrs.20218355]
Yu S S, Rosenberg R, Bruegge C, Chapsky L, Fu D J, Lee R, Taylor T, Cronk H, O’Dell C, Angal A, Xiong X X, Crisp D and Eldering A. 2020. Stability assessment of OCO-2 radiometric calibration using aqua MODIS as a reference. Remote Sensing, 12(8): 1269 [DOI: 10.3390/rs12081269http://dx.doi.org/10.3390/rs12081269]
Zhao C Y, Zhang Y N, Wei W, Zhang M, Chen L, Zhang L, Li X and Zheng X B. 2019. Absolute radiometric calibration method based on surface hyperspectral BRDF model. Acta Photonica Sinica, 48(5): 0528001
赵春艳, 张艳娜, 韦玮, 张孟, 陈林, 张璐, 李新, 郑小兵. 2019. 基于场地高光谱BRDF模型的绝对辐射定标方法. 光子学报, 48(5): 0528001 [DOI: 10.3788/gzxb20194805.0528001http://dx.doi.org/10.3788/gzxb20194805.0528001]
Zhou Q, Tian L Q, Li J and Li W K. 2020. Assessment of bidirectional reflectance effects on desert and forest for radiometric cross-calibration of satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 160: 180-194 [DOI: 10.1016/j.isprsjprs.2019.12.007http://dx.doi.org/10.1016/j.isprsjprs.2019.12.007]
相关文章
相关作者
相关机构
京公网安备11010802024621