Ecology and Environment | Views : 0 下载量: 1377 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Spatiotemporal variations in nighttime lights in poverty-stricken counties in China

    • In the final year of the battle against poverty, it is particularly important for China to evaluate the effectiveness of poverty reduction. This study conducted an in-depth exploration of poverty reduction in 831 impoverished counties and 14 extremely impoverished areas across the country through unique nighttime light remote sensing data. The results show that the economic level of most poverty-stricken counties has significantly improved, but there are still some counties where the nighttime light intensity has decreased, mainly distributed in the western region. In addition, the study also identified four types of nighttime light changes in extremely impoverished areas, revealing the clustering and constraint phenomena of poverty-stricken counties in specific regions. Of particular note is that poverty-stricken counties implementing poverty alleviation pathways such as infrastructure, characteristic industries, asset returns, and relocation have shown significant changes in nighttime lighting. This study not only provides us with a new perspective for evaluating the effectiveness of poverty reduction, but also provides important references for the construction of long-term mechanisms to address relative poverty.
    • Vol. 28, Issue 4, Pages: 940-955(2024)   

      Received:31 December 2021

      Published:07 April 2024

    • DOI: 10.11834/jrs.20221856     

    移动端阅览

  • Hua J,Wu B,Chen Z Q,Yang C S,Tang X,Sun F R,Wu J P and Yu B L. 2024. Spatiotemporal variations in nighttime lights in poverty-stricken counties in China. National Remote Sensing Bulletin, 28(4):940-955 DOI: 10.11834/jrs.20221856.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

HU Zhongwen 深圳大学 自然资源部大湾区地理环境监测重点实验室
PENG Jie 塔里木大学 农学院
GE Xiangyu 新疆大学 地理与遥感科学学院;新疆大学 新疆绿洲生态自治区重点实验室
DING Jianli 新疆大学 地理与遥感科学学院;新疆大学 新疆绿洲生态自治区重点实验室
WANG Jingzhe 深圳职业技术大学 人工智能学院;中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室
LI Xi 武汉大学 测绘遥感信息工程国家重点实验室
XIU Tianyu 武汉大学 测绘遥感信息工程国家重点实验室
MENG Qingxiang 武汉大学 遥感信息工程学院

相关机构

MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Shenzhen University
College of Agriculture, Tarim University
Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University
College of Geography and Remote Sensing Sciences, Xinjiang University
State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
0