Forestry and Agriculture | Views : 0 下载量: 2613 CSCD: 3
  • Export

  • Share

  • Collection

  • Album

    • Transferring deep convolutional neural network models for generalization mapping of autumn crops

    • Deep Convolutional Neural Network (DCNN) has made significant progress in the field of remote sensing crop recognition, but is limited by the cost of obtaining labeled samples. This study is based on the model transfer learning strategy, using the crop data layer CDL of the US Department of Agriculture Statistics as labeled data to train the U-net model and verify its transfer generalization ability in the United States and Heihe City, China.
    • Vol. 28, Issue 3, Pages: 661-676(2024)   

      Received:31 May 2021

      Published:07 March 2024

    • DOI: 10.11834/jrs.20241360     

    移动端阅览

  • Zhang F,Zhang J S,Duan Y M and Yang Z. 2024. Transferring deep convolutional neural network models for generalization mapping of autumn crops. National Remote Sensing Bulletin, 28(3):661-676 DOI: 10.11834/jrs.20241360.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

LI Zhen
LI Shanshan
GE Xiaoqing
Liangliang ZHANG 北京师范大学 地理科学学部 环境演变与自然灾害教育部重点实验
Zhao ZHANG 北京师范大学 地理科学学部 环境演变与自然灾害教育部重点实验
Juan CAO 北京师范大学 地理科学学部 环境演变与自然灾害教育部重点实验
Ziyue LI 北京师范大学 地理科学学部 环境演变与自然灾害教育部重点实验
Fulu TAO 中国科学院地理科学与资源研究所 中国科学院陆地表层格局与模拟重点实验室

相关机构

Key Laboratory of Environmental Change and Natural Disaster, MOE, Faculty of Geographical Science, Beijing Normal University
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences
Faculty of Geosciences and Engineering, Southwest Jiaotong University
Chengdu Institute of Plateau Meteorology, China Meteorological Administration
0