不透水面与地表径流时空相关性研究——以杭州市主城区为例
Temporal and spatial correlation between impervious surface and surface runoff: A case study of the main urban area of Hangzhou city
- 2020年24卷第2期 页码:182-198
纸质出版日期: 2020-02-07
DOI: 10.11834/jrs.20208248
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-02-07 ,
扫 描 看 全 文
要志鑫,孟庆岩,孙震辉,柳树福,张琳琳.2020.不透水面与地表径流时空相关性研究——以杭州市主城区为例.遥感学报,24(2): 182-198Yao Z X,Meng Q Y,Sun Z H,Liu S F and Zhang L L. 2020. Temporal and spatial correlation between impervious surface and surface runoff: A case study of the main urban area of Hangzhou city. Journal of Remote Sensing(Chinese), 24(2): 182-198[DOI:10.11834/jrs.20208248]
YAO Zhixin,MENG Qingyan,SUN Zhenhui,LIU Shufu,ZHANG Linlin. 2020. Temporal and spatial correlation between impervious surface and surface runoff: A case study of the main urban area of Hangzhou city. National Remote Sensing Bulletin. 24(2): 182-198
城市化进程中不透水面的扩展对城市地表水文循环产生了显著影响。研究不透水面与地表径流时空相关性能缓解城市内涝灾害,可为“海绵城市”提供建设意见。本文以杭州市主城区为例,提出结合BCI指数(Biophysical Composition Index)的线性光谱分解方法提取不透水面、植被和土壤盖度,提高了传统的线性光谱分解方法的精度。进一步结合SCS-CN模型(Soil Conservation Service Curve Number Method)模拟1990年—2017年杭州市主城区地表径流,在此基础上计算景观格局指数,研究杭州市主城区不透水面与模拟地表径流的时空特征,探究不透水面与模拟地表径流的关系。结果表明:(1) 研究区近30年不透水面聚集度较高且呈增长趋势,增长速率趋于平稳,上城区和下城区不透水面面积占比最高,江干区、西湖区和拱墅区增长速率和增长强度相对较大。(2) 研究区近30年模拟地表径流不断增长,220—240 mm的径流由中心城区向四周辐射,上城区和下城区模拟地表径流最高,与不透水面的演变趋势总体一致。(3)不透水面的空间格局与模拟地表径流高度相关,不透水面的斑块数量和破碎度与地表径流呈负相关,斑块所占景观比例、斑块密度、斑块聚集等与模拟地表径流正相关,可通过合理控制相关景观指标、优化不透水面空间格局控制地表径流。在此基础上提出了防止城市内涝的建议:增加绿地、花园等用地类型;减少大面积不透水面斑块,划分成更多的小斑块等。
In the process of urbanization
the expansion of impervious surface has a significant impact on the urban surface hydrdogical cycle
studying the temporal and spatial correlation between impervious surface and surface runoff can alleviate urban waterlogging
which can provide some suggestions for the construction of "sponge city" and scientific basis for the improvement of urban drainage system. In this work
the combination of linear spectral decomposition method with BCI index and SCS—CN model are used to simulate the surface runoff changes caused by impervious surface in the main urban area of Hangzhou in 1990—2017. Moreover
the landscape pattern index is calculated to explore the relationship between impervious surface and surface runoff.
Results show that: (1) In the main urban area of Hangzhou
the impervious surface is high and increasing during the past 30 years
and the growth rate tends to be stable. The impervious surface area of Shangcheng District and Xiacheng District has the highest proportion. Jianggan District
Xihu District
and Gongshu District have a large growth rate and intensity. (2) In the past 30 years
the surface runoff of Hangzhou’s main urban area continued to increase
and the 220—240 mm runoff radiated from the center of the city to the surrounding area. The surface runoff of Shangcheng District and Xiacheng District was the highest
which was roughly consistent with the evolution of impervious surface. (3) The spatial pattern of impervious surface is highly related to surface runoff. The number and fragmentation degree of impervious surface are negatively correlated with surface runoff
and the proportion of patch occupied landscape
patch density
and patch aggregation are positively correlated with surface runoff. Surface runoff can be controlled by optimizing the space patterns of impervious surface
such as reducing large areas of impervious surfaces and increasing the number of impervious surface patches.
遥感水文模型不透水面空间格局地表径流回归分析杭州
remote sensinghydrological modelimpervious surfacespatial patternsurface runoffregressive analysisHangzhou
Bauer M E, Heinert N J, Doyle J K and Yuan F. 2004. Impervious surface mapping and change monitoring using Landsat remote sensing//ASPRS Annual Conference Proceedings. Denver, Colorado: [s.n.]
Brabec E, Schulte S and Richards P L. 2002. Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. Journal of Planning Literature, 16(4): 499-514 [DOI: 10.1177/088541202400903563http://dx.doi.org/10.1177/088541202400903563]
Chen W B, Xiao D N and Li X Z. 2002. Classification, application, and creation of landscape indices. Chinese Journal of Applied Ecology, 13(1): 121-125
陈文波, 肖笃宁, 李秀珍. 2002. 景观指数分类、应用及构建研究. 应用生态学报, 13(1): 121-125 [DOI: 10.13287/j.1001-9332.2002.0027http://dx.doi.org/10.13287/j.1001-9332.2002.0027]
Civco D L and Hurd J D. 1997. Impervious surface mapping for the state of Connecticut//Proceedings of American Society for Photogrammetry and Remote Sensing (ASPRS) Annual Conference. Seattle, WA, USA: [s.
n.]: 124-135
Cronshey R G, Roberts R T and Miller N. 1985. Urban Hydrology for Small Watersheds (TR-55 REV.). American Society of Civil Engineers: 1268-1273
Deng C B and Wu C S. 2012. BCI: a biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127: 247-259 [DOI: 10.1016/j.rse.2012.09.009http://dx.doi.org/10.1016/j.rse.2012.09.009]
Dougherty M, Dymond R L, Goetz S J, Jantz C A and Goulet N. 2004. Evaluation of impervious surface estimates in a rapidly urbanizing watershed. Photogrammetric Engineering and Remote Sensing, 70(11): 1275-1284 [DOI: 10.14358/PERS.70.11.1275http://dx.doi.org/10.14358/PERS.70.11.1275]
Fan F L, Deng Y B, Hu X F and Weng Q H. 2013. Estimating composite curve number using an improved SCS-CN method with remotely sensed variables in Guangzhou, China. Remote Sensing, 5(3): 1425-1438 [DOI: 10.3390/rs5031425http://dx.doi.org/10.3390/rs5031425]
Fu S, Zhang G, Wang N and Luo L. 2011. Initial abstraction ratio in the SCS-CN method in the Loess Plateau of China. Transactions of the ASABE, 54(1): 163-169 [DOI: 10.13031/2013.36271http://dx.doi.org/10.13031/2013.36271]
Gillies R R, Box J B, Symanzik J and Rodemaker E J. 2003. Effects of urbanization on the aquatic fauna of the Line Creek watershed, Atlanta—a satellite perspective. Remote Sensing of Environment, 86(3): 411-422 [DOI: 10.1016/S0034-4257(03)00082-8http://dx.doi.org/10.1016/S0034-4257(03)00082-8]
Hodgson M E, Jensen J R, Tullis J A, Riordan K D and Archer C M. 2003. Synergistic use of Lidar and color aerial photography for mapping urban parcel imperviousness. Photogrammetric Engineering and Remote Sensing, 69(9): 973-980 [DOI: 10.14358/PERS.69.9.973http://dx.doi.org/10.14358/PERS.69.9.973]
Huang M B, Gallichand J, Dong C Y, Wang Z L and Shao M A. 2007. Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China. Hydrological Process, 21(11): 1471-1481 [DOI: 10.1002/hyp.6312http://dx.doi.org/10.1002/hyp.6312]
Huang M B, Gallichand J, Wang Z L and Goulet M. 2006. A modification to the soil conservation service curve number method for steep slopes in the Loess Plateau of China. Hydrological Process, 20(3): 579-589 [DOI: 10.1002/hyp.5925http://dx.doi.org/10.1002/hyp.5925]
Hulshoff R M. 1995. Landscape indices describing a Dutch landscape. Landscape Ecology, 10(2): 101-111 [DOI: 10.1007/BF00153827http://dx.doi.org/10.1007/BF00153827]
Jennings D B, Jarnagin S T and Ebert D W. 2004. A modeling approach for estimating watershed impervious surface area from national land cover data 92. Photogrammetric Engineering and Remote Sensing, 70(11): 1295-1307 [DOI: 10.14358/PERS.70.11.1295http://dx.doi.org/10.14358/PERS.70.11.1295]
Jeon J H, Lim K J and Engel B A. 2014. Regional calibration of SCS-CN L-THIA model: application for ungauged basins. Water, 6(5): 1339-1359 [DOI: 10.3390/w6051339http://dx.doi.org/10.3390/w6051339]
Kauffman G J, Belden A C, Vonck K J and Homsey A R. 2009. Link between impervious cover and base flow in the White Clay Creek Wild and Scenic Watershed in Delaware. Journal of Hydrologic Engineering, 14(4): 324-335 [DOI: 10.1061/(ASCE)1084-0699(2009)144(324http://dx.doi.org/10.1061/(ASCE)1084-0699(2009)144(324)]
Ke W C, Tao C, Ma J L, Liu Y and Zou Z R. 2018. Research on unsupervised city extraction based on Landsat and DMSP-OLS. Geomatics and Spatial Information Technology, 41(7): 183-186
柯文聪, 陶超, 马进龙, 刘莹, 邹峥嵘. 2018. 基于Landsat与DMSP-OLS的非监督城区提取方法研究. 测绘与空间地理信息, 41(7): 183-186 [DOI: 10.3969/j.issn.1672-5867.2018.07.051http://dx.doi.org/10.3969/j.issn.1672-5867.2018.07.051]
Kim N W, Won Y S, Lee J and Jeong J. 2011. Hydrological impacts of urban imperviousness in white rock creek watershed. Transactions of the ASABE, 54(5): 1759-1771 [DOI: 10.13031/2013.39848http://dx.doi.org/10.13031/2013.39848]
Li C L. 2010. The extract Impervious Surface and its Effect on Hydrological on the Qinhuai River Basin. Nanjing: Nanjing University
李彩丽. 2010. 秦淮河流域不透水面提取及其水文效应研究. 南京: 南京大学
Li P, Wang Y J and Xing W J. 2016. Application of urban impervious surface extraction based on TM image—taking Guangzhou City as an example. Journal of Heilongjiang Institute of Technology, 30(1): 19-23
李鹏, 王永吉, 刑武杰. 2016. 基于TM影像的城市不透水面提取应用研究——以广州市为例. 黑龙江工程学院学报, 30(1): 19-23 [DOI: 10.3969/j.issn.1671-4679.2016.01.005http://dx.doi.org/10.3969/j.issn.1671-4679.2016.01.005]
Lu D S and Weng Q H. 2006. Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sensing of Environment, 104(2): 157-167 [DOI: 10.1016/j.rse.2005.11.015http://dx.doi.org/10.1016/j.rse.2005.11.015]
Ma Y X, Zhou W B and Song Y. 2016. Land use change and its impact on surface runoff in the main city of Xi’an. South-to-North Water transfers and Water Science and Technology, 14(5): 49-54, 90
马亚鑫, 周维博, 宋扬. 2016. 西安市主城区土地利用变化及其对地表径流的影响. 南水北调与水利科技, 14(5): 49-54, 90 [DOI: 10.13476/j.cnki.nsbdqk.2016.05.008http://dx.doi.org/10.13476/j.cnki.nsbdqk.2016.05.008]
Maidment D R. 1992. Handbook of hydrology. New York: McGraw-Hill Book Company
Qiu B X. 2015. Connotation, approach and prospect of sponge city (LID). Construction Science and Technology, (1): 1-7 (仇保兴. 2015. 海绵城市(LID)的内涵、途径与展望. 建设科技, (1): 1-7) [DOI: 10.16116/j.cnki.jskj.2015.01.003]
Ridd M K. 1995. Exploring a V-I-S (Vegetation-Impervious surface-Soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. International Journal of Remote Sensing, 16(12): 2165-2185 [DOI: 10.1080/01431169508954549http://dx.doi.org/10.1080/01431169508954549]
Shao W and Pan W B. 2012. On the relationship between urban impervious surface and rainfall-runoff. Journal of Subtropical Resources and Environment, 7(4): 20-27
邵崴, 潘文斌. 2012. 城市不透水面与降雨径流关系研究. 亚热带资源与环境学, 7(4): 20-27 [DOI: 10.3969/j.issn.1673-7105.2012.04.005http://dx.doi.org/10.3969/j.issn.1673-7105.2012.04.005]
Tang P, Wang W, Zhang Z, Su T X and Wang H. 2018. Quantitative research on rain-flood patterns of urban area in the construction of “Sponge Cities”. Journal of Nanjing Forestry University (Natural Sciences Edition), 42(1): 15-20
汤鹏, 王玮, 张展, 苏同向, 王浩. 2018. 海绵城市建设中建成区雨洪格局的量化研究. 南京林业大学学报(自然科学版), 42(1): 15-20 [DOI: 10.3969/j.issn.1000-2006.201705064http://dx.doi.org/10.3969/j.issn.1000-2006.201705064]
Vanhalsel M, Bfckx C, Janssens D. 2011. Measuring dissimilarity of geographically dispersed space-time paths [J].Transportation, 38(1): 65-79. [DOI: 10.1007/S1116-010-9286-9http://dx.doi.org/10.1007/S1116-010-9286-9]
Wang M Y and Xu H Q. 2018. Temporal and spatial changes of urban impervious surface and its influence on urban ecolo-gical quality: a comparison between Shanghai and New York. Chinese Journal of Applied Ecology, 29(11): 3735-3746
王美雅, 徐涵秋. 2018. 上海和纽约城市不透水面时空变化及其对生态质量影响的对比. 应用生态学报, 29(11): 3735-3746 [DOI: 10.13287/j.1001-9332.201811.018http://dx.doi.org/10.13287/j.1001-9332.201811.018]
Wu C S. 2004. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sensing of Environment, 93(4): 480-492 [DOI: 10.1016/j.rse.2004.08.003http://dx.doi.org/10.1016/j.rse.2004.08.003]
Wu C S and Murray A T. 2003. Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 84(4): 493-505 [DOI: 10.1016/S0034-4257(02)00136-0http://dx.doi.org/10.1016/S0034-4257(02)00136-0]
Xian G. 2007. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations. International Journal of Remote Sensing, 28(24): 5427-5445 [DOI: 10.1080/01431160701227653http://dx.doi.org/10.1080/01431160701227653]
Xu H Q. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5): 589-595
徐涵秋. 2005. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究. 遥感学报, 9(5): 589-595 [DOI:10.11834/jrs.20050586http://dx.doi.org/10.11834/jrs.20050586]
Xu H Q and Wang M Y. 2016. Remote sensing-based retrieval of ground impervious surfaces. Journal of Remote Sensing, 20(5): 1270-1289
徐涵秋, 王美雅. 2016. 地表不透水面信息遥感的主要方法分析. 遥感学报, 20(5): 1270-1289 [DOI: 10.11834/jrs.20166210http://dx.doi.org/10.11834/jrs.20166210]
Yang L, Tian F Q and Niyogi D. 2015. A need to revisit hydrologic responses to urbanization by incorporating the feedback on spatial rainfall patterns. Urban Climate, 12: 128-140 [DOI: 10.1016/j.uclim.2015.03.001http://dx.doi.org/10.1016/j.uclim.2015.03.001]
Yang L M, Huang C Q, Homer C G, Wylie B K and Coan M J. 2003a. An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Canadian Journal of Remote Sensing, 29(2): 230-240 [DOI: 10.5589/m02-098http://dx.doi.org/10.5589/m02-098]
Yang L M, Xian G, Klaver J M and Deal B. 2003b. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric Engineering and Remote Sensing, 69(9): 1003-1010 [DOI: 10.14358/PERS.69.9.1003http://dx.doi.org/10.14358/PERS.69.9.1003]
Yang X J. 2006. Estimating landscape imperviousness index from satellite imagery. IEEE Geoscience and Remote Sensing Letters, 3(1): 6-9 [DOI: 10.1109/LGRS.2005.853929http://dx.doi.org/10.1109/LGRS.2005.853929]
Yu K J, Li D H, Yuan H, Fu W, Qiao Q and Wang S S. 2015. “Sponge city”: theory and Practice. City Planning Review, 39(6): 26-36
俞孔坚, 李迪华, 袁弘, 傅微, 乔青, 王思思. 2015. “海绵城市”理论与实践. 城市规划, 39(6): 26-36 [DOI: 10.11819/cpr20150605ahttp://dx.doi.org/10.11819/cpr20150605a]
Yue W Z and Wu C F. 2007. Urban impervious surface distribution estimation by spectral mixture analysis. Journal of Remote Sensing, 11(6): 914-922
岳文泽, 吴次芳. 2007. 基于混合光谱分解的城市不透水面分布估算. 遥感学报, 11(6): 914-922 [DOI: 10.11834/jrs.200706123http://dx.doi.org/10.11834/jrs.200706123]
Zhang W, Zhang Z Y and Yang J. 2014. Application of SCS model to estimate volume of runoff in slope field of red soil. Bulletin of Soil and Water Conservation, 34(5): 124-127
张卫, 张展羽, 杨洁. 2014. SCS模型在红壤土坡地降雨径流量估算中的应用. 水土保持通报, 34(5): 124-127 [DOI: 10.13961/j.cnki.stbctb.2014.05.030http://dx.doi.org/10.13961/j.cnki.stbctb.2014.05.030]
Zhang X Y, Meng F and Ding N. 2003. Application of SCS model to estimating the quantity of runoff of small watershed in semi-arid or arid region. Research of Soil and Water Conservation, 10(4): 172-174, 249
张秀英, 孟飞, 丁宁. 2003. SCS模型在干旱半干旱区小流域径流估算中的应用. 水土保持研究, 10(4): 172-174, 249 [DOI: 10.3969/j.issn.1005-3409.2003.04.049http://dx.doi.org/10.3969/j.issn.1005-3409.2003.04.049]
Zhao L and Zhao Z Q. 2014. Projecting the spatial variation of economic based on the specific ellipses in China. Scientia Geographica Sinica, 34(8): 979-986
赵璐, 赵作权. 2014. 基于特征椭圆的中国经济空间分异研究. 地理科学, 34(8): 979-986[DOI: 10.13249/j.cnki.sgs.2014.08.979http://dx.doi.org/10.13249/j.cnki.sgs.2014.08.979]
相关作者
相关机构