InSAR视角下准噶尔盆地农业灌溉区地表形变特征和演化规律
The characteristics and evolution of surface deformation induced by agricultural irrigation in the Junggar Basin from the perspective of InSAR
- 2020年24卷第10期 页码:1233-1242
DOI: 10.11834/jrs.20208465
扫 描 看 全 文
扫 描 看 全 文
王海艳, 冯光财, 苗露, 等. InSAR视角下准噶尔盆地农业灌溉区地表形变特征和演化规律[J]. 遥感学报, 2020,24(10):1233-1242.
Haiyan WANG, Guangcai FENG, Lu MIAO, et al. The characteristics and evolution of surface deformation induced by agricultural irrigation in the Junggar Basin from the perspective of InSAR[J]. Journal of Remote Sensing(Chinese), 2020,24(10):1233-1242.
抽取地下水进行农业灌溉是导致地下水位快速下降的重要因素,而长期过度开采地下水往往会引发地面沉降灾害,这种现象在干旱和半干旱地区非常普遍。为了研究农业灌溉超采引发的地表形变特征和演化规律,本文以准噶尔盆地南缘、天山北麓地带为研究区域,利用SBAS-InSAR技术对2003年—2009年覆盖呼图壁县的ENVISAT/ASAR升、降轨数据进行处理,获取了该地区的地表形变场,并结合研究区的农业灌溉方式、水资源补给和季节变化等资料对地面沉降的时空变化特征进行分析,为水资源和农业可持续发展提供参考意义。实验表明,研究区内主要有两个沉降幅度较大的漏斗,且都位于农田区域。2007年以前,研究区地表没有显著形变,之后发生了较大量级的沉降。采用传统灌溉方式和时针式灌溉系统的农业区平均沉降速率最高分别可达50 mm/a和30 mm/a,前者在时间上呈线性变化,而后者具有显著的周期性变化特征。在冬季时,采用时针式灌溉系统的地区地面抬升量可达40 mm,远大于传统灌溉方式的农田区域,而夏季地面沉降速率可达200 mm/a。对研究区农业灌溉活动进行分析后发现,农业灌溉造成的地下水超采是该地区地面沉降的主要影响因素,其形变机制与季节变化具有较高的相关性,在灌溉活动休止期内地表形变取决于地下水的补给量。研究区内的形变特征和影响因素分析将为地下水资源的充分利用和农业的可持续发展提供有效的信息。
Land subsidence disasters in excessively exploited cultivation areas are caused by groundwater-dependent irrigation, which has a strong influence on the rapid decline of water table, especially in arid and semiarid regions. Many depression cones appeared in the agricultural districts in Junggar Basin, due to groundwater overexploitation, over developed crop production, and large water consumption. However, the land subsidence information in this basin is limited.,Interferometric Synthetic Aperture Radar (InSAR) technology, which has emerged in recent years, has been widely used in monitoring agricultural irrigation settlement, benefiting from its high precision, high resolution and wide temporal and spatial coverage. Small Baseline Subset (SBAS) algorithm selects high-quality image pairs obtained via D-InSAR after setting the threshold of time base and space baseline. In order to investigate the characteristics and evolution of the surface deformation induced by groundwater-dependent irrigation, we obtained the deformation information on the southern margin of the Junggar Basin and northern foothills of the Tianshan Mountains using ENVISAT/ASAR data (descending and ascending tracks) covering Hutubi County from 2003 to 2010. Data were processed utilizing time series InSAR technology based on GAMMA software and SBAS-InSAR technology.,Results from two different tracks are consistent, which show two subsidence funnels were formed in the field area after 2007. In the study area, the traditional irrigation method and clockwise irrigation system may cause average subsidence rates of 50 and 30 mm/y, respectively. The subsidence rate of the traditional irrigation method shows a linear trend over time, while that of the clockwise irrigation system is closely related to the season. In winter, the ground uplift in the area with clockwise irrigation is approximately 40 mm, which is significantly larger than that of the field area with the traditional irrigation method. In summer, the land subsidence rate caused by the clockwise irrigation system was 200 mm/y.,Therefore, groundwater overexploitation in agricultural irrigation is the major factor of land subsidence. Moreover, surface deformation during non-irrigation period is caused by groundwater recharge. Long-term extraction of groundwater for agricultural irrigation induces not only ground displacement but also serious soil salinization, which are unfavorable for crop growth and soil self-repair. Therefore, changing irrigation methods and improving the utilization of water resources are crucial. Spatial and temporal variation characteristics of land subsidence can provide a theoretical reference for the sustainable development of water resources and agriculture.
遥感农业灌溉地表形变InSAR地下水准噶尔盆地
remote sensingagricultural irrigationsurface deformationInSARgroundwaterJunggar Basin
Abdullin A, Xu W B, Kosmicki M and Jónsson S. 2015. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR//Proceedings of EGU General Assembly. At Vienna, Austria: EGU
Arai R. 2009. Application of Synthetic Aperture Radar Interferometry (InSAR) in Defining Groundwater-Withdrawal-Related Subsidence, Diamond valley, Nevada. Reno: University of Nevada, Reno
Aziguli Y. 2007. Discussion on Xinjiang water utilization and agricultural sustainable development. Gansu Nongye, (1): 40-41
阿孜古丽·玉素甫. 2007. 浅论新疆水资源利用与农业可持续发展. 甘肃农业, (1): 40-41 [DOI: 10.3969/j.issn.1673-9019.2007.01.017]
Berardino P, Fornaro G, Lanari R and Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383[DOI: 10.1109/TGRS.2002.803792http://dx.doi.org/10.1109/TGRS.2002.803792]
Chaussard E, Burgmann R, Shirzaei M and Baker B. 2013. Long-term and seasonal ground deformation in the Santa Clara Valley, California, revealed by multi decadal InSAR time series//Proceedings of AGU Fall Meeting Abstracts. [s.l.]:AGU
Chen J Y, Knight R, Zebker H A and Schreüder W A. 2016a. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations. Water Resources Research, 52(5): 3623-3636[DOI: 10.1002/2015WR 018466http://dx.doi.org/10.1002/2015WR018466]
Chen J Y, Zebker H A and Knight R. 2015b. A persistent scatterer interpolation for retrieving accurate ground deformation over InSAR-decorrelated agricultural fields. Geophysical Research Letters, 42(21): 9294-9301 [DOI: 10.1002/2015GL065031http://dx.doi.org/10.1002/2015GL065031]
Chen P. 2002. Groundwater resource to be exploited and protected reasonablly in Xinjiang province. Groundwater, 24(3): 156-159
陈鹏. 2002. 新疆地下水资源合理开发利用与保护措施. 地下水, 24(3): 156-159 [DOI: 10.3969/j.issn.1004-1184.2002.03.013http://dx.doi.org/10.3969/j.issn.1004-1184.2002.03.013]
Choopani A, Dehghani M, Nikoo M R and Zeinali S. 2017. Time series analysis of InSAR data to study land subsidence induced by groundwater level decline in SIRJAN plain. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W4: 51-57[DOI: 10.5194/isprs-archives-XLII-4-W4-51-2017http://dx.doi.org/10.5194/isprs-archives-XLII-4-W4-51-2017]
Ding X W. 2014. Analysis of the Junggar Basin water resources and land and water use conflicts. Jilin Water Resources, (4): 54-58
丁学伟. 2014. 浅析新疆准噶尔盆地水资源量与土地用水矛盾分析. 吉林水利, (4): 54-58 [DOI: CNKI:SUN:JLSL.0.2014-04-018]
Han X S and Zhang F H. 2013. Study on water resources status and human-land relationship in Junggar Basin, Xinjiang. Yangtze River, 44(S1): 55-57
韩兴胜, 张芳红. 2013. 新疆准噶尔盆地水资源现状及人地关系研究. 人民长江, 44(S1): 55-57 [DOI: 10.3969/j.issn.1001-4179.2013.z1.018http://dx.doi.org/10.3969/j.issn.1001-4179.2013.z1.018]
He Y, Zhao C Y and Zhang Q. 2016. InSAR monitoring result analysis of land subsidence in loess irrigation area. Shanghai Land and Resources, 37(1): 66-68, 81
何杨, 赵超英, 张勤. 2016. 黄土灌溉区域地面沉降InSAR监测结果分析. 上海国土资源, 37(1): 66-68, 81 [DOI: 10.3969/j.issn.2095-1329.2016.01.015http://dx.doi.org/10.3969/j.issn.2095-1329.2016.01.015]
Li Z Z and Han H L. 2014. Water resources utilization and oasis stability at Tian mountain northern foot—taking the Manasi river valley as example. Journal of Arid Land Resources and Environment, 18(8): 139-142
李志忠, 韩洪凌. 2014. 天山北麓的水资源利用与绿洲稳定性—以玛纳斯河流域为例. 干旱区资源与环境, 18(8): 139-142 [DOI: 10.13448/j.cnki.jalre.2004.s2.030http://dx.doi.org/10.13448/j.cnki.jalre.2004.s2.030]
Lu F. 2016. Discussion on the rational exploitation and utilization of groundwater resources in Xinjiang. Energy and Conservation, (9): 99-100, 102
陆峰. 2016. 新疆地下水资源合理开发利用的探讨. 能源与节能, (9): 99-100, 102 [DOI: 10.16643/j.cnki.14-1360/td.2016.09.042http://dx.doi.org/10.16643/j.cnki.14-1360/td.2016.09.042]
Motagh M, Shamshiri R, Haghighi M H, Wetzel H U, Akbari B, Nahavandchi H, Roessner S and Arabi S. 2017. Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering Geology, 218: 134-151[DOI: 10.1016/j.enggeo.2017.01.011http://dx.doi.org/10.1016/j.enggeo.2017.01.011]
Reeves J A, Knight R and Zebker H A. 2014. An analysis of the uncertainty in InSAR deformation measurements for groundwater applications in agricultural areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7): 2992-3001[DOI: 10.1109/JSTARS.2014.2322775http://dx.doi.org/10.1109/JSTARS.2014.2322775]
Reeves J A, Knight R, Zebker H A, Schreüder W A, Agram P S and Lauknes T R. 2011. High quality InSAR data linked to seasonal change in hydraulic head for an agricultural area in the San Luis Valley, Colorado. Water Resources Research, 47(12): W12510[DOI: 10.1029/2010WR010312http://dx.doi.org/10.1029/2010WR010312]
Sahu P and Sikdar P K. 2011. Threat of land subsidence in and around Kolkata city and east Kolkata wetlands, West Bengal, India. Journal of Earth System Science, 120(3): 435-446[DOI: 10.1007/s12040-011-0077-2http://dx.doi.org/10.1007/s12040-011-0077-2]
Sharifi M, Motagh M, Aipour S, Akbari V, Walter T, Rajabi M, Samadzadegan F, Djamour Y and Sedighi M. 2008. InSAR time-series analysis of land subsidence due to groundwater overexploitation in groundwater basins of central and northeast Iran//Proceedings of AGU Fall Meeting Abstracts. [s.l.]:AGU
Sneed M, Brandt J and Solt M. 2013. Land Subsidence Along the Delta-Mendota Canal in the Northern Part of the San Joaquin Valley, California, 2003-10. USGS [DOI: 10.3133/sir20135142http://dx.doi.org/10.3133/sir20135142]
Sun W B. 2013. Design and analysis of middle-long span clockwise sprinkler for Dongfeng meadow. Heilongjiang Science and Technology of Water Conservancy, 41(3): 44-46
孙文博. 2013. 东风草场时针式喷灌机中长跨度的设计与分析. 黑龙江水利科技, 41(3): 44-46 [DOI: 10.3969/j.issn.1007-7596.2013.03.014http://dx.doi.org/10.3969/j.issn.1007-7596.2013.03.014]
Ustun A, Tusat E and Yalvac S. 2010. Preliminary results of land subsidence monitoring project in Konya Closed Basin between 2006-2009 by means of GNSS observations. Natural Hazards and Earth System Sciences, 10(6): 1151-1157[DOI: 10.5194/nhess-10-1151-2010http://dx.doi.org/10.5194/nhess-10-1151-2010]
Wei W S, He Q, Liu M Z and Gao W D. 2003. Climate change and the desert environment in Junggar Basin, Xinjiang, China. Journal of Desert Research, 23(2): 101-105
魏文寿, 何清, 刘明哲, 高卫东. 2003. 准噶尔盆地的气候变化与荒漠环境研究. 中国沙漠, 23(2): 101-105 [DOI: 10.3321/j.issn:1000-694X.2003.02.001http://dx.doi.org/10.3321/j.issn:1000-694X.2003.02.001]
Wen B P, Yu Z S, Li Z H, Yang H L, He L, Jiang S and Zhang J L. 2013. Trend of the land subsidence induced by irrigation in Heifangtai, Yongjing county of Gansu province. The Chinese Journal of Geological Hazard and Control, 24(4): 108-114
文宝萍, 余志山, 黎志恒, 杨红磊, 何蕾, 蒋树, 张佳磊. 2013. 灌溉作用下甘肃永靖黑方台地面沉陷趋势分析. 中国地质灾害与防治学报, 24(4): 108-114 [DOI: 10.16031/j.cnki.issn.1003-8035.2013.04.028http://dx.doi.org/10.16031/j.cnki.issn.1003-8035.2013.04.028]
Xu L P, Guo P, Liu L and Wang L. 2014. Analysis of the spatiotemporal features of land use and land degradation in the northern piedmont area of the Tianshan Mountain. Research of Soil and Water Conservation, 21(5): 316-321
徐丽萍, 郭鹏, 刘琳, 王玲. 2014. 天山北麓土地利用与土地退化的时空特征探析. 水土保持研究, 21(5): 316-321 [DOI: 10.13869/j.cnki.rswc.2014.05.056http://dx.doi.org/10.13869/j.cnki.rswc.2014.05.056]
Zhang G X, Deng W and He Y. 2002. Groundwater crisis and sustainable agricultural development in north China. Arid Land Geography, 27(3): 437-441
章光新, 邓伟, 何岩. 2004. 我国北方地下水危机与可持续农业的发展. 干旱区地理, 27(3): 437-441 [DOI: 10.13826/j.cnki.cn65-1103/x.2004.03.030http://dx.doi.org/10.13826/j.cnki.cn65-1103/x.2004.03.030]
Zhang L, Chen X G, Liu B, Cai Q Q, Chen H J and Chen D B. 2013. The degree of hydrogeology research in the northern foot of the Tianshan Mountains. Underground Water, 35(4): 176-178
张磊, 陈旭光, 刘斌, 蔡青勤, 陈和军, 陈德斌. 2013. 天山北麓水文地质研究程度的分析. 地下水, 35(4): 176-178 [DOI: 10.3969/j.issn.1004-1184.2013.04.069http://dx.doi.org/10.3969/j.issn.1004-1184.2013.04.069]
Zhao L, Gong H L, Li X J and Zhang Y Q. 2010. Ground settlement research in Las Vegas based on PSInSAR technology. Bulletin of Surveying and Mappin, (S0): 170-173
赵璐, 宫辉力, 李晓娟, 张有全. 2010. 基于PSInSAR技术的拉斯维加斯地区地面沉降研究. 测绘通报, (S0): 170-173
Zheng J W. 2011. Study on hydrogeological conditions in the west Gobi region of Hutubi county. Xinjiang Nonferrous Metals, 34(2): 34-35, 37
郑建文. 2011. 呼图壁县西戈壁地区水文地质条件研究. 新疆有色金属, 34(2): 34-35, 37 [DOI: 10.16206/j.cnki.65-1136/tg.2011.02.012http://dx.doi.org/10.16206/j.cnki.65-1136/tg.2011.02.012]
相关作者
相关机构