海水背景下不同浓度的甲烷含量高光谱定量反演
Hyperspectral quantitative retrieval of methane content in different concentrations in the seawater background
- 2020年24卷第12期 页码:1525-1533
纸质出版日期: 2020-12-07
DOI: 10.11834/jrs.20209013
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-12-07 ,
扫 描 看 全 文
曾雅琦,王正海,邢学文,胡斌,刘松.2020.海水背景下不同浓度的甲烷含量高光谱定量反演.遥感学报,24(12): 1525-1533
Zeng Y Q,Wang Z H,Xing X W,Hu B and Liu S. 2020. Hyperspectral quantitative retrieval of methane content in different concentrations in the seawater background. Journal of Remote Sensing(Chinese), 24(12):1525-1533
在油气资源遥感探测中,通过烃渗漏引起的海表面甲烷气浓度异常来探测海底气藏是最直接的方法之一。为了更好地识别海表甲烷异常,提高遥感反演精度,对海表甲烷气含量进行定量光谱分析研究。设计室内甲烷波谱测试平台,获取海水背景下不同含量甲烷高光谱数据为数据,对光谱数据预处理及进行比值导数光谱法,并提取光谱吸收特征参数,对甲烷含量与光谱参数之间进行相关性分析,构建甲烷含量的反演模型。比值导数光谱法确实抑制了海水背景信息,突出了甲烷特征。1650—1664 nm和2180—2210 nm波段范围的光谱参数与甲烷含量相关性显著;其中,波谷、波深、面积、斜率与甲烷含量显著相关。基于2180—2210 nm波段范围建立的波谷、波深、面积、斜率四元回归方程
y
=-14.356 - 5931.796
x
1
- 4325.081
x
2
+241.481
x
3
+7531.973
x
4
拟合效果最好,
R
2
为0.9817;且在此波段范围内基于波深建立的单变量甲烷反演模型
y
= 2047.571
x
- 9.758,
R
2
为0.9741,比基于其他变量所建立的反演模型效果要好。成功获取了和海水背景下甲烷含量线性相关显著的对应波段和吸收特征,可为利用多/高光谱遥感预测勘探海表面甲烷气浓度提供一定的理论和技术依据。
In the remote sensing exploration of oil and gas resources
seabed gas reservoirs are usually detected through the anomaly of methane concentration on the sea surface caused by hydrocarbon seepage. The remote sensing exploration of hydrocarbon seepage in marine gas resources is currently mostly based on methane absorption characteristics and images. Quantitative spectral analysis of methane content on the sea surface is also insufficient. This study designs laboratory spectral response experiments of methane with different concentrations in seawater background to determine the methane anomaly on the sea surface better and improve the accuracy of remote sensing inversion. This study also attempts to establish an inversion model of methane concentration in seawater background.
A methane spectra laboratory test platform was designed to obtain hyperspectral data of different methane contents in seawater background. After spectra preprocessing and derivative of ratio spectroscopy
the spectral absorption characteristic parameters (the valley
wave depth
area
wave width
slope
and SAI) were extracted. The correlation between methane content and spectral parameters was analyzed to compare the ability of parameters to distinguish methane content. The correlation between spectral parameters with high correlation of methane content in selected bands was analyzed to further reduce the amount of data. Finally
the spectral parameters that were highly correlated with methane content and lowly correlated with each other were selected as independent variables and methane content was used as dependent variable to construct the methane content inversion model.
In the analysis of methane spectra in seawater background
the derivative of ratio spectroscopy can effectively suppress background information of seawater in the spectra and highlight the methane information. Thus
the curve characteristics of the spectra after derivative of ratio spectroscopy are only related to the content of methane. Moreover
higher methane content corresponds to more obvious characteristics. The correlation between spectral parameters in 1650—1664 nm and 2180—2210 nm with methane content is significantly correlated
which is apparently higher than that in 2300—2320 nm and 2350—2380 nm. The valley
wave depth
area
and slope are also significantly correlated with methane content. Meanwhile
wave width is generally correlated with methane content
and SAI is not correlated with methane content. The quadrivariate regression equation (
y
=-14.356 - 5931.796
x
1
- 4325.081
x
2
+241.481
x
3
+7531.973
x
4
) in 2180—2210 nm has the best fitting effect
and
R
2
is 0.9817. The single variable methane inversion model
y
= 2047.571
x
- 9.758 is based on wave depth in this band
and
R
2
is 0.9741
which is better than that of the inversion model based on other spectral characteristic parameters.
The corresponding bands of 1650—1664 nm and 2180—2210 nm and corresponding absorption characteristics (valley
wave depth
area
and slope) with significant linear correlation of methane content in sea water background are successfully obtained. The methane content inversion models with good effect and regression significance are established. They can provide theoretical and technical basis for predicting methane concentration on sea surface by multispectral/hyperspectral remote sensing.
遥感高光谱甲烷浓度光谱特征参数比值导数反演模型
remote sensinghyperspectramethane contentspectral characteristic parameterderivative of ratio spectroscopyinversion model
Almeida-Filho R, Miranda F P, Galvão L S and Freitas C C. 2002. Terrain characteristics of a tonal anomaly remotely detected in an area of hydrocarbon microseepage, Tucano basin, north-eastern Brazil. International Journal of Remote Sensing, 23(18): 3893-3898 [DOI: 10.1080/01431160210137695http://dx.doi.org/10.1080/01431160210137695]
Bradley E S, Leifer I, Roberts D A, Dennison P E and Washburn L. 2011. Detection of marine methane emissions with AVIRIS band ratios. Geophysical Research Letters, 38(10): L10702 [DOI: 10.1029/2011GL046729http://dx.doi.org/10.1029/2011GL046729]
Debba P, Carranza E J M, van der Meer F D and Stein A. 2006. Abundance estimation of spectrally similar minerals by using derivative spectra in simulated annealing. IEEE Transactions on Geoscience and Remote Sensing, 44(12): 3649-3658 [DOI: 10.1109/tgrs.2006.881125http://dx.doi.org/10.1109/tgrs.2006.881125]
Everett J R, Staskowski R J and Jengo C. 2002. Remote sensing and GIS enable future exploration success. World Oil, 223(11): 59-65
Gao L Z and Yang B L. 1991. A study on near infrared spectral characteristics of petroleum matter applied to remote sensing of oil and gas resources. Remote Sensing for Land and Resources, 3(4): 9-12, 29
高来之, 杨柏林. 1991. 应用于油气资源遥感的近红外石油物质光谱特征研究. 国土资源遥感, 3(4): 9-12, 29 [DOI: 10.6046/gtzyyg.1991.04.02http://dx.doi.org/10.6046/gtzyyg.1991.04.02]
Hu P, Tian Q J and Yan B K. 2009. The application of hyperspectral remote sensing to the identification of hydrocarbon alteration minerals in Qaidam Basin. Remote Sensing for Land and Resources, 21(2): 54-61
胡畔, 田庆久, 闫柏琨. 2009. 柴达木盆地烃蚀变矿物高光谱遥感识别研究. 国土资源遥感, 21(2): 54-61 [DOI: 10.6046/gtzyyg.2009.02.12http://dx.doi.org/10.6046/gtzyyg.2009.02.12]
Li N and Zhou P. 2015. Hydrocarbon microleakage information extraction based on ASTER data and reflectance spectroscopy. Journal of Geomechanics, 21(2): 218-227
李娜, 周萍. 2015. 基于ASTER数据和反射光谱分析的烃类微渗漏信息提取. 地质力学学报, 21(2): 218-227 [DOI: 10.3969/j.issn.1006-6616.2015.02.012http://dx.doi.org/10.3969/j.issn.1006-6616.2015.02.012]
Lintz J. 1972. Remote sensing for petroleum. AAPG Bulletin, 56(3): 542-553 [DOI: 10.1306/819A3E82-16C5-11D7-8645000102C1865Dhttp://dx.doi.org/10.1306/819A3E82-16C5-11D7-8645000102C1865D]
Lu Y C, Hu C M, Sun S J, Zhang M W, Zhou Y and Shi J. 2016. Overview of optical remote sensing of marine oil spills and hydrocarbon seepage. Journal of Remote Sensing, 20(5): 1259-1269
陆应诚, 胡传民, 孙绍杰, 张民伟, 周杨, 石静. 2016. 海洋溢油与烃渗漏的光学遥感研究进展. 遥感学报, 20(5): 1259-1269 [DOI: 10.11834/jrs.20166122http://dx.doi.org/10.11834/jrs.20166122]
Lu Y C, Zhan W F and Hu C M. 2016. Detecting and quantifying oil slick thickness by thermal remote sensing: a ground-based experiment. Remote Sensing of Environment, 181: 207-217 [DOI: 10.1016/j.rse.2016.04.007http://dx.doi.org/10.1016/j.rse.2016.04.007]
Lv C C, Wang Z W and Qian S M. 2003. A review of pixel unmixing models. Remote Sensing Information, (3): 55-58, 60
吕长春, 王忠武, 钱少猛. 2003. 混合像元分解模型综述. 遥感信息, (3): 55-58, 60 [DOI: 10.3969/j.issn.1000-3177.2003.03.016http://dx.doi.org/10.3969/j.issn.1000-3177.2003.03.016]
Lv S Q, Yin Q L, Hou M L, Ma Q L, Hu Y G and Wu W T. 2017. Spectral unmixing of mineral pigment mixture by using derivative of ratio spectroscopy based on the mode. The Journal of Light Scattering, 29(3): 261-265
吕书强, 尹琴丽, 侯妙乐, 马清林, 胡云岗, 武望婷. 2017. 基于众数的比值导数法在混合颜料解混中的研究. 光散射学报, 29(3): 261-265 [DOI: 10.13883/j.issn1004-5929.201703013http://dx.doi.org/10.13883/j.issn1004-5929.201703013]
Ma L, Li Y and Liu Y. 2009. Oil spill monitoring based on its spectral characteristics. Environmental Forensics, 10(4): 317-323 [DOI: 10.1080/15275920903347024http://dx.doi.org/10.1080/15275920903347024]
Roberts D A, Bradley E S, Cheung R, Leifer I, Dennison P E and Margolis J S. 2010. Mapping methane emissions from a marine geological seep source using imaging spectrometry. Remote Sensing of Environment, 114(3): 592-606 [DOI: 10.1016/j.rse.2009.10.015http://dx.doi.org/10.1016/j.rse.2009.10.015]
Shen J L, Ding S B, Qi X P and Xing X W. 2010a. The progress of remote sensing technology in the detection of hydrocarbon micro-seepage. Remote Sensing for Land and Resources, 22(3): 7-11
申晋利, 丁树柏, 齐小平, 邢学文. 2010a. 烃类微渗漏现象遥感检测研究进展. 国土资源遥感, 22(3): 7-11 [DOI: 10.6046/gtzyyg.2010.03.02http://dx.doi.org/10.6046/gtzyyg.2010.03.02]
Shen J L, Ding S B, Qi X P and Xing X W. 2010b. Preliminary study on detection of hydrocarbon seeps at the sea using Hyperion data. Remote Sensing Information, (4): 80-84
申晋利, 丁树柏, 齐小平, 邢学文. 2010b. 利用Hyperion数据提取海洋烃渗漏信息研究初探. 遥感信息, (4): 80-84 [DOI: 10.3969/j.issn.1000-3177.2010.04.015]
Solomon E A, Kastner M, MacDonald I R and Leifer I. 2009. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nature Geoscience, 2(8): 561-565 [DOI: 10.1038/ngeo574http://dx.doi.org/10.1038/ngeo574]
Thorpe A K, Roberts D A, Bradley E S, Funk C C, Dennison P E and Leifer I. 2013. High resolution mapping of methane emissions from marine and terrestrial sources using a Cluster-Tuned Matched Filter technique and imaging spectrometry. Remote Sensing of Environment, 134: 305-318 [DOI: 10.1016/j.rse.2013.03.018http://dx.doi.org/10.1016/j.rse.2013.03.018]
van der Meer F, van Dijk P, van der Werff H and Yang H. 2002. Remote sensing and petroleum seepage: a review and case study. Terra Nova, 14(1): 1-17 [DOI: 10.1046/j.1365-3121.2002.00390.xhttp://dx.doi.org/10.1046/j.1365-3121.2002.00390.x]
Wang X C, Tian Q J and Guan Z. 2007. The extraction of oil and gas information by using Hyperion imagery in the Sebei Gas Field. Remote Sensing for Land and Resources, 19(1): 36-40
王向成, 田庆久, 管仲. 2007. 基于Hyperion影像的涩北气田油气信息提取. 国土资源遥感, 19(1): 36-40 [DOI: 10.3969/j.issn.1001-070X.2007.01.007http://dx.doi.org/10.3969/j.issn.1001-070X.2007.01.007]
Wang X Z, Fu J H, Li Z Z, Guo J M, Gao R M, Yao J L, Zhang L X, Ren L Y, He Y H, Ma F X, Meng W C and Bai X Y. 2015. Study on the hyperspectral information extraction of oil and gas microseepage in the Ordos Basin. Natural Gas Geoscience, 26(10): 1917-1924
王香增, 付金华, 李志忠, 郭建明, 高瑞民, 姚泾利, 张丽霞, 任来义, 贺永红, 马芳侠, 孟旺才, 白晓寅. 2015. 鄂尔多斯盆地油气微渗漏高光谱信息提取研究. 天然气地球科学, 26(10): 1917-1924 [DOI: 10.11764/j.issn.1672-1926.2015.10.1917http://dx.doi.org/10.11764/j.issn.1672-1926.2015.10.1917]
Wang Y. 2010. Hydrocarbon microseepage information extracting through remote sensing technology in front range of Longmenshan. Coal Geology of China, 22(10): 10-16
王永. 2010. 基于遥感技术的龙门山前山带烃类微渗漏信息提取. 中国煤炭地质, 22(10): 10-16 [DOI: 10.3909/j.issn.1674-1803.2010.10.03http://dx.doi.org/10.3909/j.issn.1674-1803.2010.10.03]
Wang Y P, Geng A S and Liu D H. 1999. An investigation on remote sensing prospecting for the surface hydrocarbons in Eerduosi Basin. Natural Gas Industry, 19(6): 17-20
王云鹏, 耿安松, 刘德汉. 1999. 鄂尔多斯盆地地表烃类的遥感探测研究. 天然气工业, 19(6): 17-20
Yang D C, Chen J, Gao Z H and Han Y C. 2018. Extraction of hydrocarbon micro-seepage information based on TG-1 hyperspectral data. Remote Sensing for Land and Resources, 30(2): 107-113
杨达昌, 陈洁, 高子弘, 韩亚超. 2018. 天宫一号高光谱数据烃类微渗漏信息提取. 国土资源遥感, 30(2): 107-113 [DOI: 10.6046/gtzyyg.2018.02.15http://dx.doi.org/10.6046/gtzyyg.2018.02.15]
Yang X L and Wan X X. 2017. Obtaining particle size information of mineral pigments from disturbed spectral reflectance. Spectroscopy and Spectral Analysis, 37(7): 2158-2164
杨晓莉, 万晓霞. 2017. 受干扰光谱信息中矿物颜料粒径信息的获取. 光谱学与光谱分析, 37(7): 2158-2164) [DOI: 10.3964/j.issn.1000-0593(201707-2158-07http://dx.doi.org/10.3964/j.issn.1000-0593(2017)07-2158-07]
Zhang G F, Shen X H, Zou L J, Li C J, Wu W Y, Zhang Z, Su N and Kong F L. 2009. Identifying hydrocarbon leakage induced anomalies through remote sensing techniques in the western slope of Songliao Basin, China. Journal of Remote Sensing, 13(2): 327-334
章桂芳, 沈晓华, 邹乐君, 李长江, 吴文渊, 张重, 苏楠, 孔凡立. 2009. 松辽盆地西部斜坡区烃渗漏蚀变信息遥感探测. 遥感学报, 13(2): 327-334 [DOI: 10.3321/j.issn:1007-4619.2009.02.022http://dx.doi.org/10.3321/j.issn:1007-4619.2009.02.022]
Zhang J K, Rivard B and Sanchez-Azofeifa A. 2004. Derivative spectral unmixing of hyperspectral data applied to mixtures of lichen and rock. IEEE Transactions on Geoscience and Remote Sensing, 42(9): 1934-1940 [DOI: 10.1109/TGRS.2004.832239http://dx.doi.org/10.1109/TGRS.2004.832239]
Zhang Y, Wang Y D, Li L, Zheng C T, An Y P and Song Z Y. 2008. The principle and technical analysis of methane detection using infrared absorption spectroscopy. Spectroscopy and Spectral Analysis, 28(11): 2515-2519.
张宇, 王一丁, 李黎, 郑传涛, 安宇鹏, 宋振宇. 2008. 甲烷红外吸收光谱原理与处理技术分析. 光谱学与光谱分析, 28(11): 2515-2519) [DOI: 10.3964/j.issn.1000-0593(200811-2515-05http://dx.doi.org/10.3964/j.issn.1000-0593(2008)11-2515-05]
Zhao C H, Cheng B Z and Yang W C. 2012. Algorithm for hyperspectral unmixing using constrained nonnegative matrix factorization. Journal of Harbin Engineering University, 33(3): 377-382
赵春晖, 成宝芝, 杨伟超. 2012. 利用约束非负矩阵分解的高光谱解混算法. 哈尔滨工程大学学报, 33(3): 377-382 [DOI: 10.3969/j.issn.1006-7043.201101044http://dx.doi.org/10.3969/j.issn.1006-7043.201101044]
Zhao H Q, Zhang L F, Wu T X and Huang C P. 2013. Research on the model of spectral unmixing for minerals based on derivative of ratio spectroscopy. Spectroscopy and Spectral Analysis, 33(1): 172-176
赵恒谦, 张立福, 吴太夏, 黄长平. 2013. 比值导数法矿物组分光谱解混模型研究. 光谱学与光谱分析, 33(1): 172-176) [DOI: 10.3964/j.issn.1000-0593(201301-0172-05http://dx.doi.org/10.3964/j.issn.1000-0593(2013)01-0172-05]
Zhou Z Y. 2014. Progress in hyperspectral remote sensing for petroleum prospecting. Remote Sensing Technology and Application, 29(2): 352-361
周子勇. 2014. 高光谱遥感油气勘探进展. 遥感技术与应用, 29(2): 352-361 [DOI: 10.11873/j.issn.1004-0323.2014.2.0352http://dx.doi.org/10.11873/j.issn.1004-0323.2014.2.0352]
Zhu F, Gong H L, Sun T L, Hou J, Guo X M and Guo L. 2013. Study on reflectance spectra morphological character of the hyperspectral mixed pixels at different component proportion. Spectroscopy and Spectral Analysis, 33(7): 1897-1902
朱锋, 宫辉力, 孙天琳, 侯婕, 郭小萌, 郭琳. 2013. 不同组分比例的高光谱混合象元反射光谱形态特征研究. 光谱学与光谱分析, 33(7): 1897-1902) [DOI: 10.3964/j.issn.1000-0593(201307-1897-06http://dx.doi.org/10.3964/j.issn.1000-0593(2013)07-1897-06]
Zhu M Q, Liu D C and Zhao Y J. 2007. Remote sensing detecting for the hydrocarbon micro-seepage and its implication on the East Yimeng Uplift, Ordos Basin, China. Journal of Remote Sensing, 11(6): 882-890
祝民强, 刘德长, 赵英俊. 2007. 鄂尔多斯盆地伊盟隆起区东部微烃渗漏区的遥感识别及其意义. 遥感学报, 11(6): 882-890 [DOI: 10.3321/j.issn:1007-4619.2007.06.016http://dx.doi.org/10.3321/j.issn:1007-4619.2007.06.016]
相关作者
相关机构