结合无人机航空摄影测量的河道流量估算
River flow estimation method based on UAV aerial photogrammetry
- 2021年25卷第6期 页码:1284-1293
纸质出版日期: 2021-06-07
DOI: 10.11834/jrs.20209082
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-06-07 ,
扫 描 看 全 文
杨胜天,王鹏飞,王娟,娄和震,巩同梁.2021.结合无人机航空摄影测量的河道流量估算.遥感学报,25(6): 1284-1293
Yang S T,Wang P F,Wang J,Lou H Z and Gong T L. 2021. River flow estimation method based on UAV aerial photogrammetry. National Remote Sensing Bulletin, 25(6):1284-1293
河道流量的获取是水资源开发及生态保护的基础。但在缺少资料地区,如何方便、准确的获取流量资料仍然是一个难题。随着无人机航空摄影测量的发展,为解决该问题提供了新的数据源和思路。本研究利用无人机航空摄影获取的高精度的DOM(Digital Orthophoto Map)与DSM (Digital Surface Model),结合经典曼宁公式河道流量算法,深度挖掘航测数据记录的地表高程信息,提出了一种河道流量估算的新方法。研究计算了中国西北典型无资料区准格尔盆地的卡赞营、博尔通古、安集海、大河沿子和二叉河等5个典型断面的流量。与实测流量对比分析得出如下结论:5个计算断面流量平均相对误差为10.74%,最小相对误差为1.43%,均方根误差RMSE(Root Mean Squared Error)为4.82 m
3
/s,平均百分比误差MPE(Mean Percentage Error)为0.065,证明了将无人机数据与曼宁公式相结合的方法在径流估算上的可行性。本研究发挥了无人机航空摄影快速、便捷、高精度获取河道基础信息的优势,论证了无人机航空摄影测量数据与经典流量公式相结合的可行性,为缺少资料地区径流资料的获取提供新思路。研究结果为缺少资料区水资源开发和生态保护提供了重要数据,同时为复杂水文模式的简化处理在缺少资料地区模拟计算提供了重要的验证数据。
River discharge is the basis for water resources and ecological protection
and it is an essential part of the hydrological cycle. However
some large areas in the world lack hydrological data. How to obtain river hydrological data conveniently and accurately remains a hot topic in the prediction of ungauged basins
especially in small and medium rivers. Solving the problem of data acquisition in areas lacking traditional hydrological data is beneficial for the management of water resources and rapid prediction of water disasters. Remote sensing technology
which is a non-contact data acquisition method
has been applied in many fields. This technology breaks the limits of space in acquiring river discharge
especially in areas where obtaining basic data is difficult
and has become a preferred method of data acquisition.
Therefore
this study tries to take advantage of low-altitude remote sensing in obtaining terrain data. The study combines high-density terrain data with classical Manning-Strickler formula to estimate the river discharge. This study is based on representative rivers in the Junggar Basin
which is the second largest inland basin in China. The Kazanying section
Bortonggu section
Anji Sea section
Daheiyanzi section
and Rocha River section are selected as study sections. Combined with the Manning-Strickler formula
Digital Orthophoto Map (DOM) and Digital Surface Model (DSM) image data obtained by an Unmanned Aerial Vehicle (UAV) are used to calculate the theoretical river discharge. The Manning-Strickler formula needs four parameters to calculate discharge: cross-section area
hydraulic radius
hydraulic gradient
and roughness. Cross-section area and hydraulic radius are extracted in cross-section
which is combined with DSM and measured data; hydraulic radius reflects the slope of the river
which is calculated with DSM and DOM in Arc GIS; roughness
an empirical value that measures the level of obstruction of water flow in the river bed and embankment
is obtained by using DOM. On the basis of the values of these parameters
we calculated the discharge in Kazanying section
Bortonggu section
Anji Sea section
Daheiyanzi section
and Rocha River section. Their calculated values are 28.73 m
3
/s
46.29 m
3
/s
104.84 m
3
/s
19.77 m
3
/s
and 6.83 m
3
/s
respectively. To verify the effectiveness and accuracy of the low-altitude remote sensing method in river flow calculation
we used traditional measurements to record the measured values of river discharge. This study selected 20% of the allowable error as the standard of Relative Accuracy (RA) and used the measured value to evaluate the calculated value. Root Mean Squared Error (RMSE) and Mean Percentage Error (MPE) are important methods of evaluating accuracy
which are used as criteria for evaluating overall reliability.
According to the established evaluation method
the results in the five sections show that the average error is 10.74%
the maximum value is 28.48%,the minimum value is 1.43%
the RMSE is 4.82
m
3
/s
and the MPE is 0.065. The reason why the maximum relative error occurs in the Bortonggu section is because the value of roughness is too small. The results of the accuracy analysis indicate that the method used in this study is reasonable and has a well applicability in the study area. Moreover
the results prove that the classic Manning-Strickler formula can be combined with low-altitude remote sensing data.
To resolve the problem of river discharge monitoring in ungauged areas
this study developed a new method that integrates classic river discharge algorithms with low-altitude remote sensing. The advantages of UAV are fully exploited in this study
and the use of UAV complements the research gap in the acquisition of small and medium-sized river discharge through remote sensing data. Research results have significant values for the application of flow simulation methods in ungauged regions and also provide a new solution for rapid and convenient collection of hydrological information. This study has unique advantages for water resources management and water disaster monitoring in key areas.
无人机曼宁公式低空遥感河道流量计算精度分析无资料区
UAVManning-Strickler formulalow-altitude remote sensingriver discharge calculationaccuracy analysisungauged basins
Alsdorf D E and Lettenmaier D P. 2003. Tracking fresh water from space. Science, 301(5639): 1491-1494 [DOI: 10.1126/science.1089802http://dx.doi.org/10.1126/science.1089802]
Bao Z X, Zhang J Y, Liu J F, Fu G B, Wang G Q, He R M, Yan X L, Jin J L and Liu H W. 2012. Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions. Journal of Hydrology, 466-467: 37-46 [DOI: 10.1016/j.jhydrol.2012.07.048http://dx.doi.org/10.1016/j.jhydrol.2012.07.048]
Beven K and Binley A. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6(3): 279-298 [DOI: 10.1002/hyp.3360060305http://dx.doi.org/10.1002/hyp.3360060305]
Bjerklie D M, Ayotte J D and Cahillane M J. 2015. Simulating hydrologic response to climate change scenarios in four selected watersheds of New Hampshire. Scientific Investigations Report
Einstein H A. 1944. Bed-Load Transportation in Mountain Creek. Clemson, S.C.: Greenville Sediment Load Laboratory
Garambois P A and Monnier J. 2015. Inference of effective river properties from remotely sensed observations of water surface. Advances in Water Resources, 79: 103-120 [DOI: 10.1016/j.advwatres.2015.02.007http://dx.doi.org/10.1016/j.advwatres.2015.02.007]
Gleason C J and Smith L C. 2014. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences of the United States of America, 111(13): 4788-4791 [DOI: 10.1073/pnas.1317606111http://dx.doi.org/10.1073/pnas.1317606111]
Harder P, Schirmer M, Pomeroy J and Helgason W. 2016. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle. The Cryosphere, 10(6): 2559-2571 [DOI: 10.5194/tc-10-2559-2016http://dx.doi.org/10.5194/tc-10-2559-2016]
Huang Q, Long D, Du M D, Zeng C, Qiao G, Li X D, Hou A Z and Hong Y. 2018. Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: a case study of the Upper Brahmaputra River. Remote Sensing of Environment, 219: 115-134 [DOI: 10.1016/j.rse.2018.10.008http://dx.doi.org/10.1016/j.rse.2018.10.008]
Jia J F, Zhao J W and Chen K X. 2010. Manning’s formula and error analysis. Shanxi Architecture, 36(7): 313-314
贾界峰, 赵井卫, 陈客贤. 2010. 曼宁公式及其误差分析. 山西建筑, 36(7): 313-314
Kerr J M and Purkis S. 2018. An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data. Remote Sensing of Environment, 210: 307-324 [DOI: 10.1016/j.rse.2018.03.024http://dx.doi.org/10.1016/j.rse.2018.03.024]
Lewin J and Gibbard P L. 2010. Quaternary river terraces in England: forms, sediments and processes. Geomorphology, 120(3/4): 293-311 [DOI: 10.1016/j.geomorph.2010.04.002http://dx.doi.org/10.1016/j.geomorph.2010.04.002]
Li J Z, Guo X L, Gong T L, Wang J, Wang T and Li H. 2018. A method estimating natural runoff in regions with none or less data. Journal of Hydraulic Engineering, 49(11): 1420-1428
李甲振, 郭新蕾, 巩同梁, 王静, 王涛, 李慧. 2018. 无资料或少资料区河流流量监测与定量反演. 水利学报, 49(11): 1420-1428 [DOI: 10.13243/j.cnki.slxb.20180149http://dx.doi.org/10.13243/j.cnki.slxb.20180149]
Ling F, Cai X B, Li W B, Xiao F, Li X D and Du Y. 2012. Monitoring river discharge with remotely sensed imagery using river island area as an indicator. Journal of Applied Remote Sensing, 6(1): 063564 [DOI: 10.1117/1.JRS.6.063564http://dx.doi.org/10.1117/1.JRS.6.063564]
Liu C M, Men B H and Song J X. 2007. Ecological hydraulic radius method for estimating ecological water demand in river. Progress in Natural Science, 17(1): 42-48
刘昌明, 门宝辉, 宋进喜. 2007. 河道内生态需水量估算的生态水力半径法. 自然科学进展, 17(1): 42-48 [DOI: 10.3321/j.issn:1002-008X.2007.01.007http://dx.doi.org/10.3321/j.issn:1002-008X.2007.01.007]
Neitzel F and Klonowski J. 2011. Mobile 3D mapping with a low-cost UAV system. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22: 39-44 [DOI: 10.5194/isprsarchives-XXXVIII-1-C22-39-2011http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-39-2011]
Oudin L, Andréassian V, Perrin C, Michel C and Le Moine N. 2008. Spatial proximity, physical similarity, regression and ungaged catchments: a comparison of regionalization approaches based on 913 French catchments. Water Resources Research, 44(3): W03413 [DOI: 10.1029/2007WR006240http://dx.doi.org/10.1029/2007WR006240]
Qian N, Hong R J, Mai Q W and Bi C F. 1959. Channel roughness of Lower Yellow River. Journal of Sediment Research, 4(1): 3-17
钱宁, 洪柔嘉, 麦乔威, 毕慈芬. 1959. 黄河下游的糙率问题. 泥沙研究, 4(1): 3-17
Rui X F. 2004. Hydrology Principle. Beijing: China Water and Power Press: 9-12
芮孝芳. 2004. 水文学原理. 北京: 中国水利水电出版社: 9-12
Sichangi A W, Wang L, Yang K, Chen D L, Wang Z J, Li X P, Zhou J, Liu W B and Kuria D. 2016. Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sensing of Environment, 179: 36-53 [DOI: 10.1016/j.rse.2016.03.019http://dx.doi.org/10.1016/j.rse.2016.03.019]
Simons D B, Li R M and Al-Shaikh-Ali K S. 1979. Flow resistance in cobble and boulder riverbeds. Journal of the Hydraulics Division, 105(5): 477-488
Sivapalan M, Takeuchi K, Franks S W, Gapta V K, Karambiri H, Lakshmi V, Liang X, McDonnell J J, Mendiondo E M, O’Connell P E, Oki T, Pomeroy J W, Schertzer D, Uhlenbrook S and Zehe E. 2003. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003~2012: shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 48(6): 857-880 [DOI: 10.1623/hysj.48.6.857.51421http://dx.doi.org/10.1623/hysj.48.6.857.51421]
Sun D P and Ding X Q. 2009. Hydraulics. Zhengzhou: The Yellow River Water Conservancy Press: 175-177
孙东坡, 丁新求. 2009. 水力学. 郑州: 黄河水利出版社: 175-177
Wang S S, Zhou F Q and Russell H. 2017. Estimating snow mass and Peak River flows for the Mackenzie River basin using GRACE satellite observations. Remote Sensing, 9(3): 256 [DOI: 10.3390/rs9030256http://dx.doi.org/10.3390/rs9030256]
Watson C S, King O, Miles E S and Quincey D J. 2018. Optimising NDWI supraglacial pond classification on Himalayan debris-covered glaciers. Remote Sensing of Environment, 217: 414-425 [DOI: 10.1016/j.rse.2018.08.020http://dx.doi.org/10.1016/j.rse.2018.08.020]
Xiang H T and Tian L. 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108(2): 174-190 [DOI: 10.1016/j.biosystemseng.2010.11.010http://dx.doi.org/10.1016/j.biosystemseng.2010.11.010]
Xie Y B. 2009. Water Information and Technology. Beijing: China Water and Power Press: 69-72
谢悦波. 2009. 水信息技术. 北京: 中国水利水电出版社: 69-72
Yang S T. 2012. Ecohydrological Models: Introduction and Application. Beijing: Science Press: 1-17
杨胜天. 2012. 生态水文模型与应用. 北京: 科学出版社: 1-17
Young A R. 2006. Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model. Journal of Hydrology, 320(1/2): 155-172 [DOI: 10.1016/j.jhydrol.2005.07.017http://dx.doi.org/10.1016/j.jhydrol.2005.07.017]
Zhang C B, Yang S T, Zhao C S, Lou H Z, Zhang Y C, Bai J, Wang Z W, Guan Y B and Zhang Y. 2018. Topographic data accuracy verification of small consumer UAV. Journal of Remote Sensing, 22(1): 185-195
张纯斌, 杨胜天, 赵长森, 娄和震, 张亦弛, 白娟, 王志伟, 管亚兵, 张远. 2018. 小型消费级无人机地形数据精度验证. 遥感学报, 22(1): 185-195 [DOI:10.11834/jrs.20186483http://dx.doi.org/10.11834/jrs.20186483]
Zhao C S, Zhang C B, Yang S T, Liu C M, Xiang H, Sun Y, Yang Z Y, Zhang Y, Yu X Y, Shao N F and Yu Q. 2017. Calculating e-flow using UAV and ground monitoring. Journal of Hydrology, 552: 351-365 [DOI: 10.1016/j.jhydrol.2017.06.047http://dx.doi.org/10.1016/j.jhydrol.2017.06.047]
Zhao Z X and He J J. 2010. Hydraulics. 2nd ed. Beijing: TsingHua University Press: 176-177
赵振兴, 何建京. 2010. 水力学. 3版. 北京: 清华大学出版社: 176-177
相关作者
相关机构