耦合MOD16和SMAP的微波土壤湿度降尺度研究
A primary study on downscaling microwave soil moisture with MOD16 and SMAP
- 2021年25卷第3期 页码:776-790
纸质出版日期: 2021-03-07
DOI: 10.11834/jrs.20209253
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-03-07 ,
扫 描 看 全 文
孙灏,周柏池,李欢,阮琳.2021.耦合MOD16和SMAP的微波土壤湿度降尺度研究.遥感学报,25(3): 776-790
Sun H,Zhou B C,Li H and Ruan L. 2021. A primary study on downscaling microwave soil moisture with MOD16 and SMAP. National Remote Sensing Bulletin, 25(3):776-790
局域尺度上的水文或农业应用亟需较高空间分辨率的土壤湿度(SM)数据,微波土壤湿度空间降尺度是实现这一需求的重要途径。其中“光学/热红外与微波数据融合”的降尺度方法展现出了较大的应用潜力,然而这类方法依赖于遥感地表温度LST(Land Surface Temperature)或由LST分解得到的SM指数,受限于LST“云污染”、LST与SM解耦效应和LST分解不确定性等问题。为规避上述问题,本文通过构建3种地表蒸散效率LEE(Land surface Evapotranspiration Efficiency)与SM的降尺度函数关系(指数、余弦、余弦平方),利用MODIS地表蒸散数据(MOD16A2)计算得到的LEE(空间分辨率500 m)实现了SMAP土壤湿度产品(空间分辨率36 km)的空间降尺度。研究从动态范围、能量守恒、SM地面稀疏验证站、SM地面核心验证站等角度对降尺度算法进行评价分析。结果表明,本算法有效增加了原SM产品的空间细节特征、保持了原SM产品的动态范围并且降尺度前后能量守恒;与地面验证数据的对比分析表明,降尺度结果有效保持了原SM与地面实测数据的良好一致性;敏感性分析表明,余弦平方函数对MOD16A2产品误差的敏感性相对最小。
Improving the spatial resolution of microwave Soil Moisture (SM) production is of great significance for hydrological and agricultural applications on a regional scale. Downscaling microwave satellite SM with optical/thermal infrared and microwave fusion method shows great application potential. However
it mostly relies on remote sensing surface temperature (LST) or the SM index derived by LST decomposition
which is limited by the cloud contamination problems
LST decomposition uncertainties
and the decoupling effect between LST and SM. To circumvent these problems
we made a primary study on downscaling microwave SM by coupling MOD16 and SMAP data. In this study
we constructed three parameterized downscaling functions (i.e.
exponent
cosine
cosine squared) between Land surface Evapotranspiration Efficiency (LEE) and SM. MOD16 products is employed to calculate LEE
which has a spatial resolution of 500 m. Combining the parameterized downscaling functions and the high-resolution LEE
original SMAP SM (spatial resolution
36 km) data were successfully downscaled to a spatial resolution of 500m. The downscaled SM was evaluated in terms of dynamic range
energy conservation
in situ SM at sparse stations
and in situ SM at Core Validation Station (CVS). Results demonstrated that the downscaling algorithm increases the spatial detail characteristics of original SM
maintains the dynamic range of SM
and preserves energy during the downscaling process. Moreover
it maintains the performance of the original SM as compared with in situ SM at CVS and sparse stations. Sensitivity analysis showed that the cosine-square downscaling function is less sensitive to errors in MOD16 production than the other two downscaling functions.
微波土壤湿度空间降尺度地表蒸散效率MOD16SMAP
microwave soil moisturespatially downscalingland surface evapotranspiration efficiencyMOD16SMAP
AghaKouchak A, Farahmand A, Melton F S, Teixeira J, Anderson M C, Wardlow B D and Hain C R. 2015. Remote sensing of drought: progress, challenges and opportunities. Reviews of Geophysics, 53(2): 452-480 [DOI: 10.1002/2014rg000456http://dx.doi.org/10.1002/2014rg000456]
Al-Yaari A, Wigneron J P, Kerr Y, Rodriguez-Fernandez N, O’Neill P E, Jackson T J, De Lannoy G J M, Al Bitar A, Mialon A, Richaume P, Walker J P, Mahmoodi A and Yueh S. 2017. Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets. Remote Sensing of Environment, 193: 257-273 [DOI: 10.1016/j.rse.2017.03.010http://dx.doi.org/10.1016/j.rse.2017.03.010]
Anderson M C, Norman J M, Mecikalski J R, Otkin J A and Kustas W P. 2007. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. Journal of Geophysical Research: Atmospheres, 112(D11): D11112 [DOI: 10.1029/2006jd007507http://dx.doi.org/10.1029/2006jd007507]
Busch F A, Niemann J D and Coleman M. 2012. Evaluation of an empirical orthogonal function–based method to downscale soil moisture patterns based on topographical attributes. Hydrological Processes, 26(18): 2696-2709 [DOI: 10.1002/hyp.8363http://dx.doi.org/10.1002/hyp.8363]
Chan S K, Bindlish R, O'Neill P, Jackson T, Njoku E, Dunbar S, Chaubell J, Piepmeier J, Yueh S, Entekhabi D, Colliander A, Chen F, Cosh M H, Caldwell T, Walker J, Berg A, McNairn H, Thibeault M, Martínez-Fernández J, Uldall F, Seyfried M, Bosch D, Starks P, Holifield Collins C, Prueger J, Van Der Velde R, Asanuma J, Palecki M, Small E E, Zreda M, Calvet J, Crow W T and Kerr Y. 2018. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sensing of Environment, 204: 931-941 [DOI: 10.1016/j.rse.2017.08.025http://dx.doi.org/10.1016/j.rse.2017.08.025]
Chan S K, Bindlish R, O'Neill P E, Njoku E, Jackson T, Colliander A, Chen F, Burgin M, Dunbar S, Piepmeier J, Yueh S, Entekhabi D, Cosh M H, Caldwell T, Walker J, Wu X L, Berg A, Rowlandson T, Pacheco A, McNairn H, Thibeault M, Martínez-Fernández J, González-Zamora Á, Seyfried M, Bosch D, Starks P, Goodrich D, Prueger J, Palecki M, Small E E, Zreda M, Calvet J C, Crow W T and Kerr Y. 2016. Assessment of the SMAP passive soil moisture product. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4994-5007 [DOI: 10.1109/tgrs.2016.2561938http://dx.doi.org/10.1109/tgrs.2016.2561938]
Chen F, Crow W T, Bindlish R, Colliander A, Burgin M S, Asanuma J and Aida K. 2018. Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sensing of Environment, 214: 1-13 [DOI: 10.1016/j.rse.2018.05.008http://dx.doi.org/10.1016/j.rse.2018.05.008]
Colliander A, Cosh M H, Misra S, Jackson T J, Crow W T, Chan S, Bindlish R, Chae C, Holifield Collins C and Yueh S H. 2017a. Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15). Remote Sensing of Environment, 196: 101-112 [DOI: 10.1016/j.rse.2017.04.022http://dx.doi.org/10.1016/j.rse.2017.04.022]
Colliander A, Fisher J B, Halverson G, Merlin O, Misra S, Bindlish R, Jackson T J and Yueh S. 2017b. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15. IEEE Geoscience and Remote Sensing Letters, 14(11): 2107-2111 [DOI: 10.1109/lgrs.2017.2753203http://dx.doi.org/10.1109/lgrs.2017.2753203]
Colliander A, Jackson T J, Bindlish R, Chan S, Das N, Kim S B, Cosh M H, Dunbar R S, Dang L, Pashaian L, Asanuma J, Aida K, Berg A, Rowlandson T, Bosch D, Caldwell T, Caylor K, Goodrich D, al Jassar H, Lopez-Baeza E, Martínez-Fernández J, González-Zamora A, Livingston S, McNairn H, Pacheco A, Moghaddam M, Montzka C, Notarnicola C, Niedrist G, Pellarin T, Prueger J, Pulliainen J, Rautiainen K, Ramos J, Seyfried M, Starks P, Su Z, Zeng Y, Van Der Velde R, Thibeault M, Dorigo W, Vreugdenhil M, Walker J P, Wu X, Monerris A, O'Neill P E, Entekhabi D, Njoku E G and Yueh S. 2017c. Validation of SMAP surface soil moisture products with core validation sites. Remote Sensing of Environment, 191: 215-231 [DOI: 10.1016/j.rse.2017.01.021http://dx.doi.org/10.1016/j.rse.2017.01.021]
Dai A G, Trenberth K E and Qian T T. 2004. A global dataset of Palmer Drought Severity Index for 1870-2002: relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5(6): 1117-1130 [DOI: 10.1175/jhm-386.1http://dx.doi.org/10.1175/jhm-386.1]
Das K and Paul P K. 2015. Present status of soil moisture estimation by microwave remote sensing. Cogent Geoscience, 1(1): 1084669 [DOI: 10.1080/23312041.2015.1084669http://dx.doi.org/10.1080/23312041.2015.1084669]
Das N N, Entekhabi D, Njoku E G, Shi J J C, Johnson J T and Colliander A. 2014. Tests of the SMAP combined radar and radiometer algorithm using airborne field campaign observations and simulated data. IEEE Transactions on Geoscience and Remote Sensing, 52(4): 2018-2028 [DOI: 10.1109/TGRS.2013.2257605http://dx.doi.org/10.1109/TGRS.2013.2257605]
Dobriyal P, Qureshi A, Badola R and Hussain S A. 2012. A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458-549: 110-117 [DOI: 10.1016/j.jhydrol.2012.06.021http://dx.doi.org/10.1016/j.jhydrol.2012.06.021]
Kim J and Hogue T S. 2012. Improving spatial soil moisture representation through integration of AMSR-E and MODIS products. IEEE Transactions on Geoscience and Remote Sensing, 50(2): 446-460 [DOI: 10.1109/TGRS.2011.2161318http://dx.doi.org/10.1109/TGRS.2011.2161318]
Lee T J and Pielke R A. 1992. Estimating the soil surface specific humidity. Journal of Applied Meteorology, 31(5): 480-484 [DOI: 10.1175/1520-0450(1992)031<0480:etsssh>2.0.co;2http://dx.doi.org/10.1175/1520-0450(1992)031<0480:etsssh>2.0.co;2]
Li Z, Guo D H and Shi J C. 2002. Measuring the change of soil moisture with vegetation cover integration passive and active microwave data. Journal of Remote Sensing, 6(6): 481-484
李震, 郭东华, 施建成. 2002. 综合主动和被动微波数据监测土壤水分变化. 遥感学报, 6(6): 481-484 [DOI: 10.11834/jrs.20060614http://dx.doi.org/10.11834/jrs.20060614]
Ling Z W, He L B and Zeng H. 2014. Evaluating the performance of the UCLA method for spatially downscaling soil moisture products using three Ts/VI indices. Chinese Journal of Applied Ecology, 25(2): 545-552
凌自苇, 何龙斌, 曾辉. 2002. 三种Ts/VI指数在UCLA土壤湿度降尺度法中的效果评价. 应用生态学报, 25(2): 545-552 [DOI: 10.13287/j.1001-9332.2014.0057http://dx.doi.org/10.13287/j.1001-9332.2014.0057]
McNairn H, Jackson T J, Wiseman G, Bélair S, Berg A, Bullock P, Colliander A, Cosh M H, Kim S B, Magagi R, Moghaddam M, Njoku E G, Adams J R, Homayouni S, Ojo E R, Rowlandson T L, Shang J L, Goïta K and Hosseini M. 2015. The soil moisture active passive validation experiment 2012 (SMAPVEX12): prelaunch calibration and validation of the SMAP soil moisture algorithms. IEEE Transactions on Geoscience and Remote Sensing, 53(5): 2784-2801 [DOI: 10.1109/TGRS.2014.2364913http://dx.doi.org/10.1109/TGRS.2014.2364913]
Merlin O, Al Bitar A, Walker J P and Kerr Y. 2010. An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data. Remote Sensing of Environment, 114(10): 2305-2316 [DOI: 10.1016/j.rse.2010.05.007http://dx.doi.org/10.1016/j.rse.2010.05.007]
Merlin O, Chehbouni A, Walker J P, Panciera R and Kerr Y H. 2008. A simple method to disaggregate passive microwave-based soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 46(3): 786-796 [DOI: 10.1109/tgrs.2007.914807http://dx.doi.org/10.1109/tgrs.2007.914807]
Merlin O, Jacob F, Wigneron J P, Walker J and Chehbouni G. 2012. Multidimensional disaggregation of land surface temperature using high-resolution red, near-infrared, shortwave-infrared, and microwave-L bands. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1864-1880 [DOI: 10.1109/tgrs.2011.2169802http://dx.doi.org/10.1109/tgrs.2011.2169802]
Merlin O, Stefan V G, Amazirh A, Chanzy A, Ceschia E, Er-Raki S, Gentine P, Tallec T, Ezzahar J, Bircher S, Beringer J and Khabba S. 2016. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach. Water Resources Research, 52(5): 3663-3684 [DOI: 10.1002/2015WR018233http://dx.doi.org/10.1002/2015WR018233]
Molero B, Merlin O, Malbéteau Y, Al Bitar A, Cabot F, Stefan V, Kerr Y, Bacon S, Cosh M H, Bindlish R and Jackson T J. 2016. SMOS disaggregated soil moisture product at 1 km resolution: processor overview and first validation results. Remote Sensing of Environment, 180: 361-376 [DOI: 10.1016/j.rse.2016.02.045http://dx.doi.org/10.1016/j.rse.2016.02.045]
Mu Q Z, Heinsch F A, Zhao M S and Running S W. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4): 519-536 [DOI: 10.1016/j.rse.2007.04.015http://dx.doi.org/10.1016/j.rse.2007.04.015]
Mu Q Z, Zhao M S and Running S W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8): 1781-1800 [DOI: 10.1016/j.rse.2011.02.019http://dx.doi.org/10.1016/j.rse.2011.02.019]
Njoku E G, Jackson T J, Lakshmi V, Chan T K and Nghiem S V. 2003. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 215-229 [DOI: 10.1109/TGRS.2002.808243http://dx.doi.org/10.1109/TGRS.2002.808243]
Njoku E G, Wilson W J, Yueh S H, Dinardo S J, Li F K, Jackson T J, Lakshmi V and Bolten J. 2002. Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Transactions on Geoscience and Remote Sensing, 40(12): 2659-2673 [DOI: 10.1109/TGRS.2002.807008http://dx.doi.org/10.1109/TGRS.2002.807008]
Noilhan J and Planton S. 1989. A simple parameterization of land surface processes for meteorological models. Monthly Weather Review, 117(3): 536-549 [DOI: 10.1175/1520-0493(1989)117<0536:aspols>2.0.co;2http://dx.doi.org/10.1175/1520-0493(1989)117<0536:aspols>2.0.co;2]
Peng J, Loew A, Merlin O and Verhoest N E C. 2017. A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics, 55(2): 341-366 [DOI: 10.1002/2016rg000543http://dx.doi.org/10.1002/2016rg000543]
Peng J, Loew A, Zhang S Q, Wang J and Niesel J. 2016. Spatial downscaling of satellite soil moisture data using a vegetation temperature condition index. IEEE Transactions on Geoscience and Remote Sensing, 54(1): 558-566 [DOI: 10.1109/TGRS.2015.2462074http://dx.doi.org/10.1109/TGRS.2015.2462074]
Petropoulos G P, Ireland G and Barrett B. 2015. Surface soil moisture retrievals from remote sensing: current status, products and future trends. Physics and Chemistry of the Earth, Parts A/B/C, 83-84: 36-56 [DOI: 10.1016/j.pce.2015.02.009http://dx.doi.org/10.1016/j.pce.2015.02.009]
Robinson D A, Campbell C S, Hopmans J W, Hornbuckle B K, Jones S B, Knight R, Ogden F, Selker J and Wendroth O. 2008. Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review. Vadose Zone Journal, 7(1): 358-389 [DOI: 10.2136/vzj2007.0143http://dx.doi.org/10.2136/vzj2007.0143]
Sako K, Moriiwa M and Satomi T. 2016. Experimental consideration on evaporation efficiency β of unsaturated sandy soil surface. Japanese Geotechnical Society Special Publication, 2(4): 226-229 [DOI: 10.3208/jgssp.JPN-029http://dx.doi.org/10.3208/jgssp.JPN-029]
Seneviratne S I, Corti T, Davin E L, Hirschi M, Jaeger E B, Lehner I, Orlowsky B and Teuling A J. 2010. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Science Reviews, 99(3-4): 125-161 [DOI: 10.1016/j.earscirev.2010.02.004http://dx.doi.org/10.1016/j.earscirev.2010.02.004]
Song L S, Liu S M, Xu T R, Xu Z W and Ma Y F. 2017. Soil evaporation and vegetation transpiration: remotely sensed estimation and validation. Journal of Remote Sensing, 21(6): 966-981
宋立生, 刘绍民, 徐同仁, 徐自为, 马燕飞. 土壤蒸发和植被蒸腾遥感估算与验证. 遥感学报, 21(6): 966-981 [DOI: 10.11834/jrs.20176391http://dx.doi.org/10.11834/jrs.20176391]
Sun D L and Pinker R T. 2004. Case study of soil moisture effect on land surface temperature retrieval. IEEE Geoscience and Remote Sensing Letters, 1(2): 127-130 [DOI: 10.1109/lgrs.2004.824749http://dx.doi.org/10.1109/lgrs.2004.824749]
Sun H. 2016a. A two-source model for estimating evaporative fraction (TMEF) coupling Priestley-Taylor formula and two-stage trapezoid. Remote Sensing, 8(3): 248 [DOI: 10.3390/rs8030248http://dx.doi.org/10.3390/rs8030248]
Sun H. 2016b. Two-stage trapezoid: a new interpretation of the land surface temperature and fractional vegetation coverage space. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1): 336-346 [DOI: 10.1109/jstars.2015.2500605http://dx.doi.org/10.1109/jstars.2015.2500605]
Sun H, Cai C C, Liu H X and Yang B 2019a. Microwave and meteorological fusion: a method of spatial downscaling of remotely sensed soil moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(4): 1107-1119 [DOI: 10.1109/jstars.2019.2901921http://dx.doi.org/10.1109/jstars.2019.2901921]
Sun H, Wang Y M, Liu W H, Yuan S Y and Nie R W. 2017. Comparison of three theoretical methods for determining dry and wet edges of the LST/FVC space: revisit of method physics. Remote Sensing, 9(6): 528 [DOI: 10.3390/rs9060528http://dx.doi.org/10.3390/rs9060528]
Sun H, Zhou B C and Liu H X. 2019b. Spatial evaluation of Soil Moisture (SM), Land Surface Temperature (LST), and LST-Derived SM indexes dynamics during SMAPVEX12. Sensors, 19(5): 1247 [DOI: 10.3390/s19051247http://dx.doi.org/10.3390/s19051247]
Verstraeten W W, Veroustraete F and Feyen J. 2008. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors, 8(1): 70-117 [DOI: 10.3390/s8010070http://dx.doi.org/10.3390/s8010070]
Vivoni E R, Moreno H A, Mascaro G, Rodriguez J C, Watts C J, Garatuza-Payan J and Scott R L. 2008. Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophysical Research Letters, 35(22): L22403 [DOI: 10.1029/2008gl036001http://dx.doi.org/10.1029/2008gl036001]
Werbylo K L and Niemann J D. 2014. Evaluation of sampling techniques to characterize topographically-dependent variability for soil moisture downscaling. Journal of Hydrology, 516: 304-316 [DOI: 10.1016/j.jhydrol.2014.01.030http://dx.doi.org/10.1016/j.jhydrol.2014.01.030]
Wu X L, Walker J P, Rüdiger C, Panciera R and Gao Y. 2017. Medium-resolution soil moisture retrieval using the bayesian merging method. IEEE Transactions on Geoscience and Remote Sensing, 55(11): 6482-6493 [DOI: 10.1109/tgrs.2017.2728808http://dx.doi.org/10.1109/tgrs.2017.2728808]
Xin Q, Li Z F, Li R J, Guo T, Wu M and Pan J J. 2016. Downscaling AMSR-E soil moisture data based on temperature vegetation drought index in Eastern China. Research of Agricultural Modernization, 37(5): 956-963
辛强, 李兆富, 李瑞娟, 郭泰, 吴敏, 潘剑君. 2016. 基于温度植被干旱指数的华东地区AMSR-E土壤水分数据的空间降尺度研究. 农业现代化研究, 37(5): 956-963 [DOI: 10.13872/j.1000-0275.2016.0099http://dx.doi.org/10.13872/j.1000-0275.2016.0099]
Ye Q Y, Chai L N, Jiang L M and Zhao T J. 2014. A disaggregation approach for soil phase transition water content using AMSR2 and MODIS products. Journal of Remote Sensing, 18(6): 1147-1157
叶勤玉, 柴琳娜, 蒋玲梅, 赵天杰. 2014. 利用AMSR2和MODIS数据的土壤冻融相变水量降尺度方法. 遥感学报, 18(6): 1147-1157 [DOI: 10.11834/jrs.20144093http://dx.doi.org/10.11834/jrs.20144093]
Zhan X W, Houser P R, Walker J P and Crow W T. 2006. A method for retrieving high-resolution surface soil moisture from Hydros L-Band radiometer and radar observations. IEEE Transactions on Geoscience and Remote Sensing, 44(6): 1534-1544 [DOI: 10.1109/TGRS.2005.863319http://dx.doi.org/10.1109/TGRS.2005.863319]
ZHANG Y, JIA Z Z, LIU S M, XU Z W, XU T R, YAO Y J, MA Y F, SONG L S, LI X, HU X, WANG Z Y, GUO Z X and ZHOU J. 2020. Advances in validation of remotely sensed land surface evapotranspiration.. Journal of Remote Sensing, 24(8):975-999
张圆,贾贞贞,刘绍民,徐自为,徐同仁,姚云军,马燕飞,宋立生,李相,胡骁,王泽宇,郭枝虾,周纪.2020. 遥感估算地表蒸散发真实性检验研究进展. 遥感学报, 24(8):975-999 [DOI: 10.11834/jrs.20209099http://dx.doi.org/10.11834/jrs.20209099]
Zhao W, Li A N and Zhao T J. 2017. Potential of estimating surface soil moisture with the triangle-based empirical relationship model. IEEE Transactions on Geoscience and Remote Sensing, 55(11): 6494-6504 [DOI: 10.1109/tgrs.2017.2728815http://dx.doi.org/10.1109/tgrs.2017.2728815]
Zhou Z, Zhao S J and Jiang L M. 2016. Downscaling methods of passive microwave remote sensing of soil moisture. Journal of Beijing Normal University (Natural Science), 52(4): 479-485
周壮, 赵少杰, 蒋玲梅. 2016. 被动微波遥感土壤水分产品降尺度方法
研究综述. 北京师范大学学报(自然科学版), 52(4): 479-485 [DOI: 10.16360/j.cnki.jbnuns.2016.04.013http://dx.doi.org/10.16360/j.cnki.jbnuns.2016.04.013]
相关作者
相关机构