卫星测高数据监测青藏高原湖泊2010年—2018年水位变化
Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data
- 2020年24卷第12期 页码:1534-1547
DOI: 10.11834/jrs.20209281
扫 描 看 全 文
扫 描 看 全 文
廖静娟, 薛辉, 陈嘉明. 卫星测高数据监测青藏高原湖泊2010年—2018年水位变化[J]. 遥感学报, 2020,24(12):1534-1547.
Jingjuan LIAO, Hui XUE, Jiaming CHEN. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data[J]. Journal of Remote Sensing(Chinese), 2020,24(12):1534-1547.
青藏高原湖泊水位变化是气候变化和生态环境变化研究的重要指标。随着Cryosat-2观测数据的日益丰富和处理技术的提升,可以有效监测更多湖泊的水位变化信息。本研究构建了基于噪声去除技术、改进的波形重跟踪处理算法(ImpMWaPP)和误差混合动态模型为一体的高精度湖泊水位序列提取方法,利用Cryosat-2 SARIn数据获取到133个青藏高原湖泊2010年—2018年的高精度水位序列,并分析了这些湖泊水位变化的时空变化特征。总体上,青藏高原湖泊的水位继续呈上升趋势,但上升速度较2003年—2009年趋缓,年均变化率0.159 m/a。从地域分布上,北部湖泊的水位上升最为显著,而南部湖泊的水位则趋于稳定。从时间上,2010年—2012年和2016年—2018年,大多数湖泊的水位呈现快速上涨,而其他时间水位相对稳定或略有下降。
The changes in lake level on the Tibetan Plateau are important indicators for the study of climate and ecological environment changes. In-situ gauges can measure high-precision lake level data, but they are costly to maintain and challenging to operate in remote areas. Satellite radar altimetry has now been used successfully for more than two decades to measure lake levels as an addition to gauge measurement. Monitoring the water level changes of more lakes becomes effective with the increase in Cryosat-2 observation data and the improvement in data processing technology.,This study presents a high-precision extraction method of lake level time series based on noise removal, improved empirical retracker (ImpMWaPP), and error mixture model. The Cryosat-2 SARIn data were used to obtain water level time series of 133 Tibetan Plateau Lakes from 2010 to 2018, and the spatiotemporal variations of these lake levels were analyzed. The accuracy of lake level extraction was validated using in-situ measurements and Hydroweb water level products.,In general, the lake levels on the Tibetan Plateau continue to rise, but the rate of increase is slower than that in the period of 2003—2009. The average annual rate of change is 0.159 m/a. From the geographical distribution, the lake levels in the northern plateau rise most significantly, while the lake levels in the southern plateau tend to be stable. The water levels of most lakes showed a rapid rise in the periods of 2010—2012 and 2016—2018, while the water levels were relatively stable or slightly decreased at other times.,The results showed that the accuracy of lake level extraction in this study was higher than that of previous studies, and the change in lake levels on the Tibetan Plateau was similar to those in the previous studies. In the future work, the change in lake levels on the Tibetan Plateau will be further estimated using multi-altimeter data. We will also consider the information of lake extent and study the change in lake volume to support the exploration of climate and environmental changes on the Tibetan Plateau.
遥感,湖泊水位,卫星测高,Cryosat-2SARIn数据,青藏高原,时空变化
remote sensinglake levelsatellite altimetryCryosat-2 SARIn dataTibetan Plateauspatio-temporal variation
Birkett C M. 1995. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. Journal of Geophysical Research, 100(C12): 25179-25204 [DOI: 10.1029/95 JC02125http://dx.doi.org/10.1029/95JC02125]
Chaudhary A, Basu S, Kumar R, Mahesh C and Sharma R. 2015. Shape classification of AltiKa 40-Hz waveforms using linear discriminant analysis and Bayes decision rule in the Gujarat coastal region. Marine Geodesy, 38(S1): 62-72 [DOI: 10.1080/01490419.2014.1001504http://dx.doi.org/10.1080/01490419.2014.1001504]
Che X H, Feng M, Jiang H, Xiao T, Jiang C Z, Jia B and Bai Y. 2015. Detection and analysis of Qinghai-Tibet Plateau lake area from 2000 to 2013. Journal of Geo-Information Science, 17(1): 99-107
车向红, 冯敏, 姜浩, 肖桐, 王昌佐, 贾蓓, 白燕. 2015. 2000年—2013年青藏高原湖泊面积MODIS遥感监测分析. 地球信息科学学报, 17(1): 99-107 [DOI: 10.3724/SP.J.1047.2015.00099http://dx.doi.org/10.3724/SP.J.1047.2015.00099]
Crétaux J F, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Bergé-Nguyen M, Gennero M C, Nino F, Abarca Del Rio R, Cazenave A and Maisongrande P. 2011. SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data. Advances in Space Research, 47(9): 1497-1507 [DOI: 10.1016/j.asr.2011.01.004http://dx.doi.org/10.1016/j.asr.2011.01.004]
Gao L, Liao J J, Liu H L and Guo W. 2013. Applying Status and development tendency of satellite radar altimeter. Remote Sensing Technology and Application, 28(6): 978-983
高乐, 廖静娟, 刘焕玲, 郭伟. 2013. 卫星雷达测高的应用现状及发展趋势. 遥感技术与应用, 28(6): 978-983
Gao L, Liao J J and Shen G Z. 2013. Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002-2012). Journal of Applied Remote Sensing, 7(1): 073470 [DOI: 10.1117/1.JRS.7.073470http://dx.doi.org/10.1117/1.JRS.7.073470]
Guo J Y, Sun J L, Chang X T, Guo S Y and Liu X. 2010. Water level variation of Bosten Lake monitored with TOPEX/Poseidon and its correlation with NINO3 SST. Acta Geodaetica et Cartographica Sinica, 39(3): 221-226
郭金运, 孙佳龙, 常晓涛, 郭淑艳, 刘新. 2010. TOPEX/Poseidon卫星监测博斯腾湖水位变化及其与NINO3 SST的相关性分析. 测绘学报, 39(3): 221-226
Göttl F, Dettmering D, Müller F L and Schwatke C. 2016. Lake level estimation based on CryoSat-2 SAR altimetry and multi-looked waveform classification. Remote Sensing, 8(1): 885 [DOI: 10.3390/rs8110885http://dx.doi.org/10.3390/rs8110885]
Hwang C, Cheng Y S, Han J, Kao R, Huang C Y, Wei S H and Wang H H. 2016. Multi-decadal monitoring of lake level changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-family altimeters: climate implication. Remote Sensing, 8(6): 446 [DOI: 10.3390/rs8060446http://dx.doi.org/10.3390/rs8060446]
Jiang L G, Nielsen K, Andersen O B and Bauer-Gottwein P. 2017a. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. Journal of Hydrology, 544: 109-124 [DOI: 10.1016/j.jhydrol.2016.11.024http://dx.doi.org/10.1016/j.jhydrol.2016.11.024]
Jiang L G, Schneider R, Andersen O B and Bauer-Gottwein P. 2017b. CryoSat-2 altimetry applications over rivers and lakes. Water, 9(3): 211 [DOI: 10.3390/w9030211http://dx.doi.org/10.3390/w9030211]
Jiang W P, Chu Y H, Li J C and Yao Y S. 2008. Water level variation of Qinghai Lake from Altimeteric data. Geomatics and Information Science of Wuhan University, 33(1): 64-67
姜卫平, 褚永海, 李建成, 姚永顺. 2008. 利用ENVISAT测高数据监测青海湖水位变化. 武汉大学学报(信息科学版), 33(1): 64-67
Kleinherenbrink M, Ditmar P G and Lindenbergh R C. 2014. Retracking Cryosat data in the SARIn mode and robust lake level extraction. Remote Sensing of Environment, 152: 38-50 [DOI: 10.1016/j.rse.2014.05.014http://dx.doi.org/10.1016/j.rse.2014.05.014]
Kleinherenbrink M, Lindenbergh R C and Ditmar P G. 2015. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. Journal of Hydrology, 521: 119-131 [DOI: 10.1016/j.jhydrol.2014.11.063http://dx.doi.org/10.1016/j.jhydrol.2014.11.063]
Kristensen K, Nielsen A, Berg C W, Skaug H and Bell B M. 2016. TMB: Automatic differentiation and Laplace approximation. Journal of Statistical Software, 70(5): 1-21 [DOI: 10.18637/jss.v070.i05http://dx.doi.org/10.18637/jss.v070.i05]
Kropáček J, Braun A, Kang S C, Feng C, Ye Q H and Hochschild V. 2012. Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. International Journal of Applied Earth Observation and Geoinformation, 17: 3-11 [DOI: 10.1016/j.jag.2011.10.001http://dx.doi.org/10.1016/j.jag.2011.10.001]
Lee S, Im J, Kim J, Kim M, Shin M. Kim H C and Quackenbush L J. 2016. Arctic sea ice thickness estimation from CryoSat-2 satellite data using machine learning-based lead detection. Remote Sensing, 8(9): 698 [DOI: 10.3390/rs8090698http://dx.doi.org/10.3390/rs8090698]
Liao J J, Gao L and Wang X M. 2014. Numerical simulation and forecasting of water level for Qinghai Lake using multi-altimeter data between 2002 and 2012. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2): 609-622 [DOI: 10.1109/JSTARS.2013.2291516http://dx.doi.org/10.1109/JSTARS.2013.2291516]
Liu J S, Wang S Y, Yu S M, Yang D Q and Zhang L. 2009. Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global and Planetary Change, 67(3/4): 209-217 [DOI: 10.1016/j.gloplacha.2009.03.010http://dx.doi.org/10.1016/j.gloplacha.2009.03.010]
Lu A X, Yao T D, Wang L H, Liu S Y and Guo Z L. 2005. Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing. Journal of Glaciology and Geocryology, 27(6): 783-792
鲁安新, 姚檀栋, 王丽红, 刘时银, 郭治龙. 2005. 青藏高原典型冰川和湖泊变化遥感研究. 冰川冻土, 27(6): 783-792 [DOI: 10.3969/j.issn.1000-0240.2005.06.001http://dx.doi.org/10.3969/j.issn.1000-0240.2005.06.001]
Marshall A and Deng X L. 2016. Image analysis for altimetry waveform selection over heterogeneous inland waters. IEEE Geoscience and Remote Sensing Letters, 13(8): 1198-1202 [DOI: 10.1109/LGRS.2016.2575068http://dx.doi.org/10.1109/LGRS.2016.2575068]
Morris C S and Gill S K. 1994. Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes. Journal of Geophysical Research, 99(C12): 24527-24539 [DOI: 10.1029/94JC01642http://dx.doi.org/10.1029/94JC01642]
Nielsen K, Stenseng L, Andersen O B and Knudsen P. 2017. The performance and potentials of the CryoSat-2 SAR and SARIn modes for lake level estimation. Water, 9(6): 374 [DOI: 10.3390/w90 60374http://dx.doi.org/10.3390/w9060374]
Nielsen K, Stenseng L, Andersen O B, Villadsen H and Knudsen P. 2015. Validation of CryoSat-2 SAR mode based lake levels. Remote Sensing of Environment, 171: 162-170 [DOI: 10.1016/j.rse.2015.10.023http://dx.doi.org/10.1016/j.rse.2015.10.023]
Pavlis N K, Holmes S A, Kenyon S C and Factor J K. 2012. The development and evaluation of the Earth Gravitational Model 2008 EGM2008. Journal of Geophysical Research, 117(B4): B04406 [DOI: 10.1029/2011JB008916http://dx.doi.org/10.1029/2011JB008916]
Phan V H, Lindenbergh R and Menenti M. 2012. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. International Journal of Applied Earth Observation and Geoinformation, 17: 12-22 [DOI: 10.1016/j.jag.2011.09.015http://dx.doi.org/10.1016/j.jag.2011.09.015]
Pritchard H D. 2017. Asia’s glaciers are a regionally important buffer against drought. Nature, 545(7653): 169-174 [DOI: 10.1038/nature22062http://dx.doi.org/10.1038/nature22062]
Qiu J E. 2008. China: the third pole. Nature, 454(7203): 393-396 [DOI: 10.1038/454393ahttp://dx.doi.org/10.1038/454393a]
Ricker R, Hendricks S, Helm V and Gerdes R. 2015. Classification of CryoSat-2 radar echoes//Lohmann G, Meggers H, Unnithan V, Wolf-Gladrow D, Notholt J and Bracher A, eds. Towards an Interdisciplinary Approach in Earth System Science: Advances of a Helmholtz Graduate Research School. Cham: Springer International Publishing: 149-158 [DOI: 10.1007/978-3-319-13865-7_17http://dx.doi.org/10.1007/978-3-319-13865-7_17]
Shen X Y, Zhang J, Zhang X, Meng J M and Ke C Q. 2017. Sea ice classification using Cryosat-2 altimeter data by optimal classifier-feature assembly. IEEE Geoscience and Remote Sensing Letters, 14(11): 1948-1952 [DOI: 10.1109/LGRS.2017.2743339http://dx.doi.org/10.1109/LGRS.2017.2743339]
Song C Q, Huang B, Ke L H and Richards K S. 2014. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. Journal of Hydrology, 514: 131-144 [DOI: 10.1016/j.jhydrol.2014.04.018http://dx.doi.org/10.1016/j.jhydrol.2014.04.018]
Song C Q, Ye Q H and Cheng X. 2015. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Science Bulletin, 60(14): 1287-1297 [DOI: 10.1007/s11434-015-0826-8http://dx.doi.org/10.1007/s11434-015-0826-8]
Tourneret J Y, Mailhes C, Amarouche L and Steunou N. 2008. Classification of altimetric signals using linear discriminant analysis//Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA, USA: IEEE: 75-78 [DOI: 10.1109/IGARSS.2008.4779286http://dx.doi.org/10.1109/IGARSS.2008.4779286]
Villadsen H, Deng X L, Andersen O B, Stenseng L, Nielsen K and Knudsen P. 2016. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. Journal of Hydrology, 537: 234-247 [DOI: 10.1016/j.jhydrol.2016.03.051http://dx.doi.org/10.1016/j.jhydrol.2016.03.051]
Wan W, Long D, Hong Y, Ma Y Z, Yuan Y, Xiao P F, Duan H T, Han Z Y and Gu X F. 2016. A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Scientific Data, 3(3): 160039 [DOI: 10.1038/sdata.2016.39http://dx.doi.org/10.1038/sdata.2016.39]
Wang H H, Yue Y C, Zhou X C and Yang Y D. 2010. Classification of radar altimeter waveforms based on cluster analysis. Geomatics and Information Science of Wuhan University, 35(7): 833-836
汪海洪, 岳迎春, 邹贤才, 杨元德. 2010. 基于聚类分析的卫星雷达测高波形分类研究. 武汉大学学报(信息科学版), 35(7): 833-836
Wingham D J, Rapley C G and Griffiths H. 1986. New techniques in satellite altimeter tracking systems//Proceedings of IGARSS 86 Symposium. Zurich: ESA: 1339-1344
Wu G X, Liu Y M, Zhang, Q, Duan A M, Wang T M, Wan R J, Liu X, Li W P, Wang Z Z and Liang X Y. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8(4): 770-789 [DOI: 10.1175/JHM609.1http://dx.doi.org/10.1175/JHM609.1]
Wu Y H, Zheng H X, Zhang B, Chen D M and Lei L P. 2014. Long-term changes of lake level and water budget in the Nam Co Lake Basin, Central Tibetan Plateau. Journal of Hydrometeorology, 15(3): 1312-1322 [DOI: 10.1175/JHM-D-13-093.1http://dx.doi.org/10.1175/JHM-D-13-093.1]
Xue H, Liao J J and Zhao L F, 2018. A modified empirical retracker for lake level estimation using Cryosat-2 SARin data. Water, 10(11): 1584 [DOI: 10.3390/w10111584http://dx.doi.org/10.3390/w10111584]
Yao T D, Thompson L G, Mosbrugger V, Zhang F, Ma Y M, Luo T X, Xu B Q, Yang X X, Joswiak D R, Wang W C, Joswiak M E, Devkota L P, Tayal S, Jilani R and Fayziev R. 2012. Third Pole Environment (TPE). Environmental Development, 3: 52-64 [DOI: 10.1016/j.envdev.2012.04.002http://dx.doi.org/10.1016/j.envdev.2012.04.002]
Yao X J, Liu S Y, Sun M P, Guo W Q and Zhang X. 2012. Changes of Kusai Lake in Hoh Xil region and causes of its water overflowing. Acta Geographica Sinica, 67(5): 689-698
姚晓军, 刘时银, 孙美平, 郭万钦, 张晓. 2012. 可可西里地区库赛湖变化及湖水外溢成因. 地理学报, 67(5): 689-698 [DOI: 10.11821/xb2012 05011http://dx.doi.org/10.11821/xb201205011]
Zhang G Q. 2018. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations. Progress in Geography, 37(2): 214-223
张国庆. 2018. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展. 地理科学进展, 37(2): 214-223 [DOI: 10.18306/dlkxjz.2018.02.004http://dx.doi.org/10.18306/dlkxjz.2018.02.004]
Zhang G Q, Xie H J, Kang S C, Yi D H and Ackley S F. 2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 115(7): 1733-1742 [DOI: 10.1016/j.rse.2011.03.005http://dx.doi.org/10.1016/j.rse.2011.03.005]
Zhang X and Wu Y H. 2015. Zhari Namco water level change detection using multi-satellite altimetric data during 1992-2012. Journal of Natural Resources, 30(7): 1153-1162
张鑫, 吴艳红. 2015. 基于多源卫星测高数据的扎日南木错水位动态变化(1992—2012年). 自然资源学报, 30(7): 1153-1162 [DOI: 10.11849/zrzyxb.2015.07.008http://dx.doi.org/10.11849/zrzyxb.2015.07.008]
Zhang Y L, Li B Y and Zheng D. 2002. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21(1): 1-8
张镱锂, 李炳元, 郑度. 2002. 论青藏高原范围与面积. 地理研究, 21(1): 1-8 [DOI: 10.3321/j.issn:1000-0585.2002.01.001http://dx.doi.org/10.3321/j.issn:1000-0585.2002.01.001]
Zhao Y, Liao J J, Shen G Z and Zhang X L. 2017. Monitoring the water level changes in Qinghai Lake with satellite altimetry data. Journal of Remote Sensing, 21(4): 633-644
赵云, 廖静娟, 沈国状, 张学良. 2017. 卫星测高数据监测青海湖水位变化. 遥感学报, 21(4): 633-644 [DOI: 10.11834/jrs.20176217http://dx.doi.org/10.11834/jrs.20176217]
Zhou H, Shen J, Yang Z Y and Wang H H. 2015. Study on the methods of coastal altimetry waveform classification and discrimination. Science of Surveying and Mapping, 40(6): 67-71, 91
周浩, 谌佳, 杨正银, 汪海洪. 2015. 近海卫星测高波形分类与判别. 测绘科学, 40(6): 67-71, 91 [DOI: 10.16251/j.cnki.1009-2307.2015.06.0014http://dx.doi.org/10.16251/j.cnki.1009-2307.2015.06.0014]
相关文章
相关作者
相关机构