InSAR技术在滑坡灾害中的应用研究进展
Application of InSAR technology in landslide hazard: Progress and prospects
- 2021年25卷第2期 页码:614-629
纸质出版日期: 2021-02-07
DOI: 10.11834/jrs.20209297
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-02-07 ,
扫 描 看 全 文
李晓恩,周亮,苏奋振,吴文周.2021.InSAR技术在滑坡灾害中的应用研究进展.遥感学报,25(2): 614-629
Li X E,Zhou L,Su F Z and Wu W Z. 2021. Application of InSAR technology in landslide hazard: Progress and prospects. National Remote Sensing Bulletin, 25(2):614-629
InSAR技术作为重要的对地观测技术之一,已在城市、矿山、地质灾害等地表形变监测领域得到广泛应用与探索,特别是在滑坡灾害形变监测中具有很强的实用性。为全面、准确及深入认识和梳理InSAR技术在滑坡灾害应用中的前沿科学问题、局限性、面临挑战及未来发展趋势,以期更好地服务于滑坡灾害的防治与监测。以InSAR技术滑坡灾害应用研究为主要脉络,系统阐述其研究进展:(1)以滑坡监测中应用的主要InSAR方法概述为切入点,系统梳理了各类主要方法的适用范围、优缺点及内在联系;(2)基于早期识别探测、不同量级形变监测、活动模式与三维信息获取、形变与诱因耦合4个视角,深入探析InSAR技术在滑坡应用中的最新进展、趋势及目前应用中存在的关键问题与挑战;(3)针对InSAR技术系统的局限性、滑坡灾害的特点,剖析了InSAR滑坡监测中存在的几何畸变、密集植被覆盖、大气干扰、三维形变信息获取、精度评定、滑坡形变的复杂性和非线性等问题,并对相应问题的解决提供了可行性的方案与建议措施;(4)基于InSAR滑坡行业体系构建的视角,结合人工智能(AI)、机器学习、无人机遥感及地学领域地震台网等其他观测技术,从数据处理、与其他新型技术融合对未来InSAR在滑坡应用研究进行总结和展望。
InSAR technology
one of the important earth observation technologies
has been widely used and explored in the field of surface deformation monitoring
such as city
mine
and geological disaster
especially in landslide deformation monitoring. This study systematically expounded and summarized the relevant progress worldwide in recent years from three aspects of InSAR methods
thematic fields
and existing problems. This task is conducted to fully and accurately understand the frontier scientific problems of the InSAR technology in landslide disaster application and sort out its limitations
challenges
and future development trend. Moreover
this work is carried out to better serve the landslide disaster control and monitoring. The specific content includes the following aspects:
(1) Based on the overview of the main InSAR methods used in landslide monitoring
our research comprehensively reviewed and summarized the application scope
advantages
and disadvantages and internal relations of various InSAR methods. A reasonable understanding of the characteristics of various methods is an important part of the scientific design of the InSAR landslide application monitoring scheme.
(2) We analyzed the four relevant topics in recent years regarding InSAR landslide early identification and detection
deformation monitoring of different magnitudes
activity patterns
and 3D information acquisition
and coupling of deformation and inducement. This work focused on the cases of major outstanding innovations in the existing applications and summarized the deficiencies and challenges of the corresponding topic content in the current research. First
starting from the early identification of InSAR landslide
a research hotspot
comparative analysis
and discussion are made on its research scenes by country and situation. In view of the different characteristics of the deformation variables at various stages of landslides
this research focused on the effective monitoring and acquisition of landslide deformation information
landslide movement patterns
and 3D landslide information. This work discussed in detail the progress made in the past and current problems. Then
this work demonstrated the application boundaries and effective auxiliary methods of different InSAR technologies in landslide monitoring and made a comprehensive and in-depth analysis of the development of InSAR technologies. This work focused on the analysis of the current InSAR technology and data on the progress of landslide activity mode information acquisition and landslide 3D deformation research. Moreover
this work summarized the advantages and disadvantages of various methods that can obtain 3D landslide information. Finally
this work briefly discussed the current progress and inadequacies related to the coupling of InSAR deformation and incentives and the multisource/metalandslide monitoring cases with InSAR as the main supplement to other remote sensing technologies.
(3) The limitations of the InSAR technology system and the characteristics of landslide disasters were summarized according to the research progress made under the existing conditions. We analyzed the problems of geometric distortion
dense vegetation coverage
atmospheric interference
3D deformation information acquisition
accuracy evaluation
complexity
and nonlinearity of landslide deformation in InSAR landslide monitoring. This work also provided concrete and feasible solutions and recommended measures for solving the corresponding problems in this research.
(4) From the perspective of the construction of the InSAR landslide industry system
we combined artificial intelligence
machine learning
UAV remote sensing
seismic network in the field of geosciences
and other observation technologies in our analysis. In view of data processing and integration with other new technologies
the future research of InSAR in landslide applications was summarized and prospected.
遥感InSAR技术山体滑坡地质灾害形变监测研究进展
remote sensingInSARlandslidesgeological hazardsdeformation monitoringresearch progress
Ao M, Zhang Q, Zhao C Y and Liu G Q. 2017. An improved CR-InSAR technology used for deformation monitoring in Jiaju Landslide, Sichuan. Geomatics and Information Science of Wuhan University, 42(3): 377-383
敖萌, 张勤, 赵超英, 刘广全. 2017. 改进的CR-InSAR技术用于四川甲居滑坡形变监测. 武汉大学学报信息科学版, 42(3): 377-383 [DOI: 10.13203/j.whugis20140797http://dx.doi.org/10.13203/j.whugis20140797]
Bamler R and Eineder M. 2005. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems. IEEE Geoscience and Remote Sensing Letters, 2(2): 151-155 [DOI: 10.1109/LGRS.2004.84 3203http://dx.doi.org/10.1109/LGRS.2004.843203]
Barla M, Antolini F, Bertolo D, Thuegaz P, D’Aria D and Amoroso G. 2017. Remote monitoring of the Comba Citrin landslide using discontinuous GBInSAR campaigns. Engineering Geology, 222: 111-123 [DOI: 10.1016/j.enggeo.2017.03.019http://dx.doi.org/10.1016/j.enggeo.2017.03.019]
Bechor N B D and Zebker H A. 2006. Measuring two-dimensional movements using a single InSAR pair. Geophysical Research Letters, 33(16): L16311 [DOI: 10.1029/2006GL026883http://dx.doi.org/10.1029/2006GL026883]
Berardino P, Fornaro G, Lanari R and Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383 [DOI: 10.1109/TGRS.2002.803792http://dx.doi.org/10.1109/TGRS.2002.803792]
Bru G, Escayo J, Fernández J, Mallorqui J J, Iglesias R, Sansosti E, Abajo T and Morales A. 2018. Suitability assessment of X-band satellite SAR data for geotechnical monitoring of site scale slow moving landslides. Remote Sensing, 10(6): 936 [DOI: 10.3390/rs10060936http://dx.doi.org/10.3390/rs10060936]
Calò F, Ardizzone F, Castaldo R, Lollino P, Tizzani P, Guzzetti F, Lanari R, Angeli M G, Pontoni F and Manunta M. 2014. Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy. Remote Sensing of Environment, 142: 69-82 [DOI: 10.1016/j.rse.2013.11.003http://dx.doi.org/10.1016/j.rse.2013.11.003]
Carlà T, Intrieri E, Raspini F, Bardi F, Farina P, Ferretti A, Colombo D, Novali F and Casagli N. 2019. Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Scientific Reports, 9(1): 14137 [DOI: 10.1038/s41598-019-50792-yhttp://dx.doi.org/10.1038/s41598-019-50792-y]
Cascini L, Fornaro G and Peduto D. 2010. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Engineering Geology, 112(1/4): 29-42 [DOI: 10.1016/j.enggeo.2010.01.003http://dx.doi.org/10.1016/j.enggeo.2010.01.003]
Chen B Q, Li Z H, Yu C, Fairbairn D, Kang J R, Hu J S and Liang L. 2020. Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model. Remote Sensing of Environment, 240: 111663 [DOI: 10.1016/j.rse.2020.111663http://dx.doi.org/10.1016/j.rse.2020.111663]
Cheng H Q, Chen Q, Liu G X, Yang Y H and Liu L Y. 2014. Post-earthquake landslides distribution along Longmenshan Major Fault during rainy season with Short-baseline InSAR. Acta Geodaetica et Cartographica Sinica, 43(9): 931-938
程海琴, 陈强, 刘国祥, 杨莹辉, 刘丽瑶. 2014. 短基线InSAR探测龙门山主断裂带两侧震后雨期的滑坡空间分布特征. 测绘学报, 43(9): 931-938 [DOI: 10.13485/j.cnki.11-2089.2014.0161http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0161]
Cigna F, Bateson L B, Jordan C J and Dashwood C. 2014. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sensing of Environment, 152: 441-466 [DOI: 10.1016/j.rse.2014.06.025http://dx.doi.org/10.1016/j.rse.2014.06.025]
Confuorto P, Di Martire D, Centolanza G, Iglesias R, Mallorqui J J, Novellino A, Plank S, Ramondini M, Thuro K and Calcaterra D. 2017. Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis. Remote Sensing of Environment, 188: 51-72 [DOI: 10.1016/j.rse.2016.11.002http://dx.doi.org/10.1016/j.rse.2016.11.002]
Dai K R, Li Z H, Tomás R, Liu G X, Yu B, Wang X W, Cheng H Q, Chen J J and Stockamp J. 2016. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sensing of Environment, 186: 501-513 [DOI: 10.1016/j.rse.2016.09.009http://dx.doi.org/10.1016/j.rse.2016.09.009]
Deng J H, Dai F C, Wen B P and Yao X. 2019. Investigation on the catastrophic mechanism and risk control measures of major landslides in Tibetan Plateau. Advanced Engineering Sciences, 51(5): 1-8
邓建辉, 戴福初, 文宝萍, 姚鑫. 2019. 青藏高原重大滑坡动力灾变与风险防控关键技术研究. 工程科学与技术, 51(5): 1-8 [DOI: 10.15961/j.jsuese.201900719http://dx.doi.org/10.15961/j.jsuese.201900719]
Di Martire D, Tessitore S, Brancato D, Ciminelli M G, Costabile S, Costantini M, Graziano G V, Minati F, Ramondini M and Calcaterra D. 2016. Landslide detection integrated system (LaDIS) based on in-situ and satellite SAR interferometry measurements. Catena, 137: 406-421 [DOI: 10.1016/j.catena.2015.10.002http://dx.doi.org/10.1016/j.catena.2015.10.002]
Fan Y D, Wu W, Wang W, Liu M and Wen Q. 2016. Research progress of disaster remote sensing in China. Journal of Remote Sensing, 20(5): 1170-1184
范一大, 吴玮, 王薇, 刘明, 温奇. 2016. 中国灾害遥感研究进展. 遥感学报, 20(5): 1170-1184 [DOI: 10.11834/jrs.20166171http://dx.doi.org/10.11834/jrs.20166171]
Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F and Rucci A. 2011. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3460-3470 [DOI: 10.1109/TGRS.2011.2124465http://dx.doi.org/10.1109/TGRS.2011.2124465]
Ferretti A, Prati C and Rocca F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212 [DOI: 10.1109/36.868878http://dx.doi.org/10.1109/36.868878]
Ferretti A, Prati C and Rocca F. 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20 [DOI: 10.1109/36.898661http://dx.doi.org/10.1109/36.898661]
Ferretti A, Savio G, Barzaghi R, Borghi A, Musazzi S, Novali F, Prati C and Rocca F. 2007. Submillimeter accuracy of InSAR time series: experimental validation. IEEE Transactions on Geoscience and Remote Sensing, 45(5): 1142-1153 [DOI: 10.1109/TGRS.2007.894440http://dx.doi.org/10.1109/TGRS.2007.894440]
Fruneau B, Achache J and Delacourt C. 1996. Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry. Tectonophysics, 265(3/4): 181-190 [DOI: 10.1016/S0040-1951(96)00047-9http://dx.doi.org/10.1016/S0040-1951(96)00047-9]
Gabriel A K, Goldstein R M and Zebker H A. 1989. Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7): 9183-9191 [DOI: 10.1029/JB094iB07p09183http://dx.doi.org/10.1029/JB094iB07p09183]
Ge D Q. 2019. Radar interferometry technology and application of geological hazard identification[R/OL].https://mp.weixin.qq.com/s/bmogReBOgAwBzn8FnIW9eA (https://mp.weixin.qq.com/s/bmogReBOgAwBzn8FnIW9eA(
葛大庆. 2019a. 雷达干涉测量技术与地质灾害隐患识别应用[R/OL].https://mp.weixin.qq.com/s/bmogReBOgAwBzn8FnIW9eAhttps://mp.weixin.qq.com/s/bmogReBOgAwBzn8FnIW9eA
Ge D Q, Dai K R, Guo Z C and Li Z H. 2019. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations. Geomatics and Information Science of Wuhan University, 44(7): 949-956
葛大庆, 戴可人, 郭兆成, 李振洪. 2019b. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议. 武汉大学学报·信息科学版, 44(7): 949-956 [DOI: 10.13203/j.whugis20190094http://dx.doi.org/10.13203/j.whugis20190094]
Hilley G E, Bürgmann R, Ferretti A, Novali F and Rocca F. 2004. Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304(5679): 1952-1955 [DOI: 10.1126/science.1098821http://dx.doi.org/10.1126/science.1098821]
Hooper A, Segall P and Zebker H. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7): B07407 [DOI: 10.1029/2006JB004763http://dx.doi.org/10.1029/2006JB004763]
Hu J, Li Z W, Ding X L, Zhu J J, Zhang L and Sun Q. 2014. Resolving three-dimensional surface displacements from InSAR measurements: a review. Earth-Science Reviews, 133: 1-17 [DOI: 10.1016/j.earscirev.2014.02.005http://dx.doi.org/10.1016/j.earscirev.2014.02.005]
Hu X, Wang T, Pierson T C, Lu Z, Kim J and Cecere T H. 2016. Detecting seasonal landslide movement within the Cascade landslide complex (Washington) using time-series SAR imagery. Remote Sensing of Environment, 187: 49-61 [DOI: 10.1016/j.rse.2016.10.006http://dx.doi.org/10.1016/j.rse.2016.10.006]
Jia H Y, Wang Y J, Ge D Q, Deng Y K and Wang R. 2020. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China). Remote Sensing of Environment, 247: 111899 [DOI: 10.1016/j.rse.2020.111899http://dx.doi.org/10.1016/j.rse.2020.111899]
Jiang Y N. 2018. SAR deformation measurement, interpretation and data assimilation in geological disaster monitoring. Acta Geodaetica et Cartographica Sinica, 47(10): 1425
蒋亚楠. 2018. 地质灾害监测中的SAR变形观测、解译与数据同化研究. 测绘学报, 47(10): 1425 [DOI: 10.11947/j.AGCS.2018.20170565http://dx.doi.org/10.11947/j.AGCS.2018.20170565]
Lanari R, Casu F, Manzo M, Zeni G, Berardino P, Manunta M and Pepe A. 2007. An overview of the small baseline subset algorithm: a DInSAR technique for surface deformation analysis//Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change. Basel: Birkhäuser: 637-661 [DOI: 10.1007/978-3-7643-8417-3_2http://dx.doi.org/10.1007/978-3-7643-8417-3_2]
Lanari R, Mora O, Manunta M, Mallorquí J J, Berardino P and Sansosti E. 2004. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42(7): 1377-1386 [DOI: 10.1109/TGRS.2004.828196http://dx.doi.org/10.1109/TGRS.2004.828196]
Li J, Li Z W, Ding X L, Wang Q J, Zhu J J and Wang C C. 2014. Investigating mountain glacier motion with the method of SAR intensity-tracking: removal of topographic effects and analysis of the dynamic patterns. Earth-Science Reviews, 138: 179-195 [DOI: 10.1016/j.earscirev.2014.08.016http://dx.doi.org/10.1016/j.earscirev.2014.08.016]
Li M H, Zhang L, Ding C, Li W L, Luo H, Liao M S and Xu Q. 2020. Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event. Remote Sensing of Environment, 240: 111695 [DOI: 10.1016/j.rse.2020.111695http://dx.doi.org/10.1016/j.rse.2020.111695]
Li M H, Zhang L, Shi X G, Liao M S and Yang M S. 2019. Monitoring active motion of the Guobu landslide near the Laxiwa Hydropower Station in China by time-series point-like targets offset tracking. Remote Sensing of Environment, 221: 80-93 [DOI: 10.1016/j.rse.2018.11.006http://dx.doi.org/10.1016/j.rse.2018.11.006]
Li Q and Zhang J F. 2019. Investigation on earthquake-induced landslide in Jiuzhaigou using fully polarimetric GF-3 SAR images. Journal of Remote Sensing, 23(5): 883-891
李强, 张景发. 2019. 高分三号卫星全极化SAR影像九寨沟地震滑坡普查. 遥感学报, 23(5): 883-891 [DOI: 10.11834/jrs.20197390http://dx.doi.org/10.11834/jrs.20197390]
Li Z H, Song C, Yu C, Xiao R Y, Chen L F, Luo H, Dai K R, Ge D Q, Ding Y, Zhang Y X and Zhang Q. 2019. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions. Geomatics and Information Science of Wuhan University, 44(7): 967-979
李振洪, 宋闯, 余琛, 肖儒雅, 陈立福, 罗慧, 戴可人, 葛大庆, 丁一, 张宇星, 张勤. 2019. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策. 武汉大学学报·信息科学版, 44(7): 967-979 [DOI: 10.13203/j.whugis20190098http://dx.doi.org/10.13203/j.whugis20190098]
Liao M S, Zhang L, Shi X G, Jiang Y N, Dong J and Liu Y Z. 2017. Method and practice of landslide deformation monitoring by radar remote sensing. Beijing: Science Press
廖明生, 张路, 史绪国, 蒋亚楠, 董洁, 刘宇舟. 2017. 滑坡变形雷达遥感监测方法与实践. 北京: 科学出版社
Lin H, Ma P F and Wang W X. 2017. Urban infrastructure health monitoring with spaceborne multi-temporal synthetic aperture radar interferometry. Acta Geodaetica et Cartographica Sinica, 46(10): 1421-1433
林珲, 马培峰, 王伟玺. 2017. 监测城市基础设施健康的星载MT-InSAR方法介绍. 测绘学报, 46(10): 1421-1433 [DOI: 10.11947/j.AGCS.2017.20170339http://dx.doi.org/10.11947/j.AGCS.2017.20170339]
Liu G, Guo H D, Perski Z, Fan J H, Bai S B, Yan S Y and Song R. 2016. Monitoring the slope movement of the Shuping landslide in the Three Gorges Reservoir of China, using X-band time series SAR interferometry. Advances in Space Research, 57(12): 2487-2495 [DOI: 10.1016/j.asr.2016.03.043http://dx.doi.org/10.1016/j.asr.2016.03.043]
Liu G X, Chen Q, Luo X J and Cai G L. 2019b. The Principle and Application of InSAR. Beijing: Science Press
刘国祥, 陈强, 罗小军, 蔡国林. 2019b. InSAR原理与应用. 北京: 科学出版社
Liu G X, Zhang B, Zhang R, Cai J L, Fu Y, Liu Q, Yu B and Li Z L. 2019a. Monitoring dynamics of Hailuogou Glacier and the secondary landslide disasters based on combination of satellite SAR and Ground-Based SAR. Geomatics and Information Science of Wuhan University, 44(7): 980-995
刘国祥, 张波, 张瑞, 蔡嘉伦, 符茵, 刘巧, 于冰, 李志林. 2019a. 联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测. 武汉大学学报·信息科学版, 44(7): 980-995 [DOI: 10.13203/j.whugis20190077http://dx.doi.org/10.13203/j.whugis20190077]
Liu X H, Yao X, Zhou Z K, Li L J and Yao J M. 2018. Study of the technique for Landslide rapid recognition by InSAR. Journal of Geomechanics, 24(2): 229-237
刘星洪, 姚鑫, 周振凯, 李凌婧, 姚佳明. 2018. 滑坡灾害InSAR应急排查技术方法研究. 地质力学学报, 24(2): 229-237 [DOI: 10.12090/j.issn.1006-6616.2018.24.02.024http://dx.doi.org/10.12090/j.issn.1006-6616.2018.24.02.024]
Luo H B, Li Z H, Chen J J, Pearson C, Wang M M, Lv W C and Ding H Y. 2019. Integration of Range Split Spectrum Interferometry and conventional InSAR to monitor large gradient surface displacements. International Journal of Applied Earth Observation and Geoinformation, 74: 130-137 [DOI: 10.1016/j.jag.2018.09.004http://dx.doi.org/10.1016/j.jag.2018.09.004]
Massonnet D and Rabaute T. 1993. Radar interferometry: limits and potential. IEEE Transactions on Geoscience and Remote Sensing, 31(2): 455-464 [DOI: 10.1109/36.214922http://dx.doi.org/10.1109/36.214922]
Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K and Rabaute T. 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433): 138-142 [DOI: 10.1038/364138a0http://dx.doi.org/10.1038/364138a0]
Michel R, Avouac J P and Taboury J. 1999b. Measuring ground displacements from SAR amplitude images: application to the Landers earthquake. Geophysical Research Letters, 26(7): 875-878 [DOI: 10.1029/1999GL900138http://dx.doi.org/10.1029/1999GL900138]
Michel R, Avouac J P and Taboury J. 1999a. Measuring near field coseismic displacements from SAR images: application to the Landers earthquake. Geophysical Research Letters, 26(19): 3017-3020 [DOI: 10.1029/1999GL900524http://dx.doi.org/10.1029/1999GL900524]
Michoud C, Baumann V, Lauknes T R, Penna I, Derron M H and Jaboyedoff M. 2016. Large slope deformations detection and monitoring along shores of the Potrerillos dam reservoir, Argentina, based on a small-baseline InSAR approach. Landslides, 13(3): 451-465 [DOI: 10.1007/s10346-015-0583-4http://dx.doi.org/10.1007/s10346-015-0583-4]
Nakano T, Wada K, Yamanaka M, Kamiya I and Nakajima H. 2016. Precursory slope deformation around landslide area detected by InSAR throughout Japan//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic: [s.
n.], XLI-B1: 1201-1205 [DOI: 10.5194/isprsarchives-XLI-B1-1201-2016http://dx.doi.org/10.5194/isprsarchives-XLI-B1-1201-2016]
Perissin D and Wang T. 2012. Repeat-pass SAR interferometry with partially coherent targets. IEEE Transactions on Geoscience and Remote Sensing, 50(1): 271-280 [DOI: 10.1109/TGRS.2011.21 60644http://dx.doi.org/10.1109/TGRS.2011.2160644]
Raucoules D, Cartannaz C, Mathieu F and Midot D. 2013. Combined use of space-borne SAR interferometric techniques and ground-based measurements on a 0.3 km2 subsidence phenomenon. Remote Sensing of Environment, 139: 331-339 [DOI: 10.1016/j.rse.2013.08.016http://dx.doi.org/10.1016/j.rse.2013.08.016]
Rott H, Scheuchl B, Siegel A and Grasemann B. 1999. Monitoring very slow slope movements by means of SAR interferometry: a case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophysical Research Letters, 26(11): 1629-1632 [DOI: 10.1029/1999GL900262http://dx.doi.org/10.1029/1999GL900262]
Schmidt D A and Bürgmann R. 2003. Time-dependent land uplift and subsidence in the Santa Clara Valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth, 108(B9): 2416 [DOI: 10.1029/2002jb002267http://dx.doi.org/10.1029/2002jb002267]
Shi X G, Yang C, Zhang L, Jiang H J, Liao M S, Zhang L and Liu X G. 2019. Mapping and characterizing displacements of active loess slopes along the upstream Yellow River with multi-temporal InSAR datasets. Science of the Total Environment, 674: 200-210 [DOI: 10.1016/j.scitotenv.2019.04.140http://dx.doi.org/10.1016/j.scitotenv.2019.04.140]
Shi X G, Zhang L, Liao M S and Shi S. 2018. Monitoring three dimensional displacements of the shuping landslide, Three Gorges area with multi-temporal TerraSAR-X SAR images//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE: 478-481 [DOI: 10.1109/IGARSS.2018.8519055http://dx.doi.org/10.1109/IGARSS.2018.8519055]
Shi X G, Zhang L, Xu Q, Zhao K Y, Dong J, Jiang H J and Liao M S. 2019. Monitoring slope displacements of loess terrace using time series InSAR analysis technique. Geomatics and Information Science of Wuhan University, 44(7): 1027-1034
史绪国, 张路, 许强, 赵宽耀, 董杰, 蒋厚军, 廖明生. 2019. 黄土台塬滑坡变形的时序InSAR监测分析. 武汉大学学报·信息科学版, 44(7): 1027-1034 [DOI: 10.13203/j.whugis20190056http://dx.doi.org/10.13203/j.whugis20190056]
Singleton A, Li Z, Hoey T and Muller J P. 2014. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sensing of Environment, 147: 133-144 [DOI: 10.1016/j.rse.2014.03.003http://dx.doi.org/10.1016/j.rse.2014.03.003]
Strozzi T, Caduff R, Wegmüller U, Raetzo H and Hauser M. 2017. Widespread surface subsidence measured with satellite SAR interferometry in the Swiss alpine range associated with the construction of the Gotthard Base Tunnel. Remote Sensing of Environment, 190: 1-12 [DOI: 10.1016/j.rse.2016.12.007http://dx.doi.org/10.1016/j.rse.2016.12.007]
Strozzi T, Klimeš J, Frey H, Caduff R, Huggel C, Wegmüller U and Rapre A C. 2018. Satellite SAR interferometry for the improved assessment of the state of activity of landslides: a case study from the Cordilleras of Peru. Remote Sensing of Environment, 217: 111-125 [DOI: 10.1016/j.rse.2018.08.014http://dx.doi.org/10.1016/j.rse.2018.08.014]
Strozzi T, Luckman A, Murray T, Wegmuller U and Werner C L. 2002. Glacier motion estimation using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384-2391 [DOI: 10.1109/TGRS.2002.805079http://dx.doi.org/10.1109/TGRS.2002.805079]
Sun L Y, Muller J P and Chen J S. 2017. Time series analysis of very slow landslides in the Three Gorges region through small baseline SAR offset tracking. Remote Sensing, 9(12): 1314 [DOI: 10.3390/rs9121314http://dx.doi.org/10.3390/rs9121314]
Tarchi D, Casagli N, Fanti R, Leva D D, Luzi G, Pasuto A, Pieraccini M and Silvano S. 2003. Landslide monitoring by using Ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Engineering Geology, 68(1/2): 15-30 [DOI: 10.1016/S0013-7952(02)00196-5http://dx.doi.org/10.1016/S0013-7952(02)00196-5]
Tarchi D, Rudolf H, Luzi G, Chiarantini L, Coppo P and Sieber A J. 1999. SAR interferometry for structural changes detection: a demonstration test on a dam//IEEE 1999 International Geoscience and Remote Sensing Symposium. Hamburg, Germany: IEEE, 3: 1522-1524 [DOI: 10.1109/IGARSS.1999.772006http://dx.doi.org/10.1109/IGARSS.1999.772006]
Tong X P and Schmidt D. 2016. Active movement of the Cascade landslide complex in Washington from a coherence-based InSAR time series method. Remote Sensing of Environment, 186: 405-415 [DOI: 10.1016/j.rse.2016.09.008http://dx.doi.org/10.1016/j.rse.2016.09.008]
Wang T, Jónsson S and Hanssen R F. 2014. Improved SAR image coregistration using pixel-offset series. IEEE Geoscience and Remote Sensing Letters, 11(9): 1465-1469 [DOI: 10.1109/LGRS.2013.2295429http://dx.doi.org/10.1109/LGRS.2013.2295429]
Wang X W, Liu G X, Yu B, Dai K R, Zhang R, Ma D Y, Li Z L. 2015. An integrated method based on DInSAR, MAI and displacement gradient tensor for mapping the 3D coseismic deformation field related to the 2011 Tarlay earthquake (Myanmar). Remote Sensing of Environment, 170: 388-404 [DOI: 10.1016/j.rse.2015.09.024http://dx.doi.org/10.1016/j.rse.2015.09.024]
Wasowski J and Bovenga F. 2014. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: current issues and future perspectives. Engineering Geology, 174: 103-138 [DOI: 10.1016/j.enggeo.2014.03.003http://dx.doi.org/10.1016/j.enggeo.2014.03.003]
Wegmuller U, Werner C and Strozzi T. 1998. SAR interferometric and differential interferometric processing chain//Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. Seattle, WA, USA: IEEE, 2: 1106-1108 [DOI: 10.1109/IGARSS.1998.699687http://dx.doi.org/10.1109/IGARSS.1998.699687]
Xia Y, Kaufmann H and Guo X F. 2004. Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors. Photogrammetric Engineering and Remote Sensing, 70(10): 1167-1172 [DOI: 10.14358/PERS.70.10.1167http://dx.doi.org/10.14358/PERS.70.10.1167]
Yu C, Li Z H, Penna N T and Crippa P. 2018. Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations. Journal of Geophysical Research: Solid Earth, 123(10): 9202-9222 [DOI: 10.1029/2017JB015305http://dx.doi.org/10.1029/2017JB015305]
Yun Y, Lü X L, Fu X K and Xue F Y. 2020. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring. Journal of Radars, 9(1): 73-85
云烨, 吕孝雷, 付希凯, 薛飞扬. 2020. 星载InSAR技术在地质灾害监测领域的应用. 雷达学报, 9(1): 73-85 [DOI: 10.12000/JR20007http://dx.doi.org/10.12000/JR20007]
Zebker H A, Rosen P A, Goldstein R M, Gabriel A and Werner C L. 1994. On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake. Journal of Geophysical Research: Solid Earth, 99(B10): 19617-19634 [DOI: 10.1029/94JB01179http://dx.doi.org/10.1029/94JB01179]
Zebker H A, Rosen P A and Hensley S. 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research: Solid Earth, 102(B4): 7547-7563 [DOI: 10.1029/96jb03804http://dx.doi.org/10.1029/96jb03804]
Zhang L, Ding X L and Lu Z. 2011. Modeling PSInSAR time series without phase unwrapping. IEEE Transactions on Geoscience and Remote Sensing, 49(1): 547-556 [DOI: 10.1109/TGRS.2010.2052625http://dx.doi.org/10.1109/TGRS.2010.2052625]
Zhang L, Liao M S, Dong J, Xu Q and Gong J Y. 2018. Early detection of landslide hazards in mountainous Areas of West China using Time Series SAR Interferometry-A case study of Danba, Sichuan. Geomatics and Information Science of Wuhan University, 43(12): 2039-2049
张路, 廖明生, 董杰, 许强, 龚健雅. 2018. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例. 武汉大学学报·信息科学版, 43(12): 2039-2049 [DOI: 10.13203/j.whugis20180181http://dx.doi.org/10.13203/j.whugis20180181]
Zhang Y. 2018. Detecting ground deformation and investigation landslides using InSAR technique-Taking middle reach of Bailong River Basin as an example. Lanzhou: Lanzhou University
张毅. 2018. 基于InSAR技术的地表变形监测与滑坡早期识别研究——以白龙江流域中游为例. 兰州: 兰州大学
Zhang Y, Meng X M, Dijkstra T A, Jordan C J, Chen G, Zeng R Q and Novellino A. 2020. Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sensing of Environment, 241: 111738 [DOI: 10.1016/j.rse.2020.111738http://dx.doi.org/10.1016/j.rse.2020.111738]
Zhang Y D, Li Y D, Dong J, Fan Q, Che B, Zhang L, Zhou Y and Liao M S. 2019. Landslide hazard detection in Markam with time-series InSAR analyses. Journal of Remote Sensing, 23(5): 987-996
张亚迪, 李煜东, 董杰, 范强, 车彬, 张路, 周杨, 廖明生. 2019. 时序InSAR技术探测芒康地区滑坡灾害隐患. 遥感学报, 23(5): 987-996 [DOI: 10.11834/jrs.20198025http://dx.doi.org/10.11834/jrs.20198025]
Zhao C Y, Lu Z, Zhang Q and de La Fuente J. 2012. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sensing of Environment, 124: 348-359 [DOI: 10.1016/j.rse.2012.05.025http://dx.doi.org/10.1016/j.rse.2012.05.025]
Zhao C Y, Liu X J, Zhang Q, Peng J B and Xu Q. 2019. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu. Geomatics and Information Science of Wuhan University, 44(7): 996-1007
赵超英, 刘晓杰, 张勤, 彭建兵, 许强. 2019. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究. 武汉大学学报·信息科学版, 44(7): 996-1007 [DOI: 10.13203/j.whugis20190072http://dx.doi.org/10.13203/j.whugis20190072]
Zhu J J, Li Z W and Hu J. 2017. Research progress and methods of InSAR for deformation monitoring. Acta Geodaetica et Cartographica Sinica, 46(10): 1717-1733
朱建军, 李志伟, 胡俊. 2017. InSAR变形监测方法与研究进展. 测绘学报, 46(10): 1717-1733 [DOI: 10.11947/j.AGCS.2017.20170350http://dx.doi.org/10.11947/j.AGCS.2017.20170350]
Zhu J J, Yang Z F and Li Z W. 2019. Recent progress in retrieving and predicting mining-induced 3D displacements using InSAR. Acta Geodaetica et Cartographica Sinica, 48(2): 135-144
朱建军, 杨泽发, 李志伟. 2019. InSAR矿区地表三维形变监测与预计研究进展. 测绘学报, 48(2): 135-144 [DOI: 10.11947/j.AGCS.2019.20180188http://dx.doi.org/10.11947/j.AGCS.2019.20180188]
Zhu Q, Zeng H W, Ding Y L, Xie X, Liu F, Zhang L G, Li H F, Hu H, Zhang J X, Chen L, Chen L, Zhang P C and He H G. 2019. A review of major potential landslide hazards analysis. Acta Geodaetica et Cartographica Sinica, 48(12): 1551-1561
朱庆, 曾浩炜, 丁雨淋, 谢潇, 刘飞, 张利国, 李海峰, 胡翰, 张骏骁, 陈力, 陈琳, 张鹏程, 何华贵. 2019. 重大滑坡隐患分析方法综述. 测绘学报, 48(12): 1551-1561 [DOI: 10.11947/j.AGCS.2019.20190452http://dx.doi.org/10.11947/j.AGCS.2019.20190452]
相关作者
相关机构