超轻量网络的SAR图像舰船目标在轨提取
On orbit extraction method of ship target in SAR images based on ultra-lightweight network
- 2021年25卷第3期 页码:765-775
纸质出版日期: 2021-03-07
DOI: 10.11834/jrs.20210160
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-03-07 ,
扫 描 看 全 文
李宗凌,汪路元,蒋帅,吴雨航,张庆君.2021.超轻量网络的SAR图像舰船目标在轨提取.遥感学报,25(3): 765-775
Li Z L,Wang L Y,Jiang S,Wu Y H and Zhang Q J. 2021. On orbit extraction method of ship target in SAR images based on ultra-lightweight network. National Remote Sensing Bulletin, 25(3):765-775
为了解决遥感卫星信息获取实效性差,严重依赖数据传输通信带宽,难以满足卫星在轨实时提取感兴趣目标需求等问题,本文设计了一种以全局统计为基础的高效舰船目标检测算法和超轻量化疑似目标真伪鉴别网络,实现舰船目标快速提取。采用传统图像处理方法快速检测目标,获取疑似目标切片,大幅降低数据量,采用自主设计改进的基于深度学习的超轻量鉴别网络实现疑似目标二次筛查,进一步提升目标提取精度。在算法模型实时实现过程中,合理优化算法流程和计算方法,建立计算精度误差分析模型,使得算法实时处理的精度、速度、硬件规模以及热耗等方面达到良好平衡。利用GF-3卫星数据对算法进行测试,试验表明该方法对复杂海洋背景环境、斑点噪声高、信噪比低的SAR遥感图像,舰船目标提取的准确性提升20%,达到98%,计算量降低90%,实时性提升50%。该方法兼顾了算法的有效性及在轨实时处理的可行性,可以在当前的星载嵌入式电路中实现并将在某新体制雷达试验卫星上在轨应用,具有良好的应用前景。
The low efficiency of orbit data processing and poor effectiveness of remote sensing satellite information acquisition are problems requiring great attention. Meeting the requirements of satellites in orbit in real time and efficient extraction of the targets of interest are challenging endeavors because of their heavy dependence on data transmission and communication bandwidth.
In this paper
an efficient ship target detection algorithm based on global statistics and an ultra-lightweight suspected target identification network is designed to achieve the rapid extraction of ship targets. The traditional image processing method is used to detect the target quickly
obtain the suspected target slice
and reduce the amount of data significantly. A self-designed and improved ultra-lightweight identification network based on deep learning is then used to realize a second cycle of suspected target screening and improve the accuracy of target extraction. Much work has been done to simplify the real-time implementation of image-processing methods
such as OTSU threshold calculation
connected domain labeling
and target identification network based on deep learning. The real-time processing accuracy
speed
hardware scale
and heat consumption of the proposed method are well balanced by reasonable optimization of the algorithm flow and calculation method and establishment of an appropriate error analysis model. The calculation cost of the algorithm is low
and the dependence of the real-time implementation of the algorithm on the performance of the hardware platform is reduced greatly
thereby ensuring the excellent overall performance of the algorithm. In particular
network pruning
weight parameter sharing
and quantization are used to reduce the network weight parameter and forward reasoning calculation storage requirements
thus improving the design of the target identification network.
GF-3 satellite data were used to test the algorithm
and experimental results showed that the accuracy of ship target extraction could be improved by 20%—98%
the computational complexity could be reduced by 90%
and the real-time performance could be improved by 50%. When the ship target extraction algorithm model was implemented in a low-power embedded circuit
the power consumption of the whole calculation circuit was less than 13 W
and the standby power consumption was less than 1.5 W; these values meet the requirements of full-time operations in orbit.
The proposed method takes into account the effectiveness of the algorithm and feasibility of in-orbit real-time processing to improve the energy efficiency ratio and target extraction performance of the system effectively. The proposed algorithm was implemented in the current satellite embedded circuit and the orbit of a new radar test satellite
and the results obtained reflect good application prospects.
GF-3卫星超轻量网络SAR图像目标检测目标鉴别在轨实时处理
ultra-lightweight networkSAR imagetarget detectiontarget identifyreal time processing on orbit
Bi F K, Gao L N, Long T and Yang J. 2011. Remote sensing target detection based on visual saliency guidance and classifier fusion. Infrared and Laser Engineering, 40(10): 2058-2064
毕福坤, 高立宁, 龙腾, 杨健. 2011. 结合视觉显著性引导与分类器融合的遥感目标检测. 红外与激光工程, 40(10): 2058-2064 [DOI: 10.3969/j.issn.1007-2276.2011.10.045http://dx.doi.org/10.3969/j.issn.1007-2276.2011.10.045]
Chen W T, Xing X W and Ji K F. 2012. A survey of ship target recognition in SAR images. Modern Radar, 34(11): 53-58
陈文婷, 邢相薇, 计科峰. 2012. SAR图像舰船目标识别综述. 现代雷达, 34(11): 53-58 [DOI: 10.3969/j.issn.1004-7859.2012.11.013http://dx.doi.org/10.3969/j.issn.1004-7859.2012.11.013]
Chen Z, Shi Y P and Ji S P. 2012. Improved image threshold segmentation algorithm based on OTSU method. Laser and Infrared, 42(5): 584-588
陈峥, 石勇鹏, 吉书鹏. 2012. 一种改进的Otsu图像阈值分割算法. 激光与红外, 42(5): 584-588 [DOI: 10.3969/j.issn.1001-5078.2012.05.023http://dx.doi.org/10.3969/j.issn.1001-5078.2012.05.023]
Cumming I G and Wong F H. 2012. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Hong W and Hu D H, trans. Beijing: Publishing House of Electronics Industry: 1-13
Cumming I G, Wong F H. 2012. 合成孔径雷达成像: 算法与实现. 洪文, 胡东辉, 译. 北京: 电子工业出版社: 1-13
Cui B, Zhang Y H, Yan L and Wei J J.2020. Dual-thresholds change detection in GF-3 SAR images. Journal of Remote Sensing, 24(1):1-10
崔斌,张永红,闫利,魏钜杰.2020.高分三号SAR影像双阈值变化检测.遥感学报,24(1):1-10 [DOI:10.11834/jrs.20208179http://dx.doi.org/10.11834/jrs.20208179]
Fang M X, Bi D P, Shen A G and Liu Q. 2017. Jamming technique of multiple false targets against CFAR detection in SAR images. Journal of Electronics and Information Technology, 39(4): 973-980
房明星, 毕大平, 沈爱国, 刘乾. 2017. 对SAR图像恒虚警检测的多假目标干扰研究. 电子与信息学报, 39(4): 973-980 [DOI: 10.11999/JEIT160633http://dx.doi.org/10.11999/JEIT160633]
He Z Y, Sun L N and Chen L G. 2013. Fast computation of threshold based on Otsu criterion. Acta Electronica Sinica, 41(2): 267-272
何志勇, 孙立宁, 陈立国. 2013. Otsu准则下分割阈值的快速计算. 电子学报, 41(2): 267-272 [DOI: 10.3969/j.issn.0372-2112.2013.02.010http://dx.doi.org/10.3969/j.issn.0372-2112.2013.02.010]
LeCun Y, Bottou L, Bengio Y and Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324 [DOI: 10.1109/5.726791http://dx.doi.org/10.1109/5.726791]
Li J W, Qu C W, Peng S J and Deng B. 2018. Ship detection in SAR images based on convolutional neural network. Systems Engineering and Electronics, 40(9): 1953-1959
李健伟, 曲长文, 彭书娟, 邓兵. 2018. 基于卷积神经网络的SAR图像舰船目标检测. 系统工程与电子技术, 40(9): 1953-1959 [DOI: 10.3969/j.issn.1001-506X.2018.09.09http://dx.doi.org/10.3969/j.issn.1001-506X.2018.09.09]
Li J W, Qu C W, Peng S J and Jiang Y. 2019. Ship detection in SAR images based on generative adversarial network and online hard examples mining. Journal of Electronics and Information Technology, 41(1): 143-149
李健伟, 曲长文, 彭书娟, 江源. 2019. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测. 电子与信息学报, 41(1): 143-149 [DOI: 10.11999/JEIT180050http://dx.doi.org/10.11999/JEIT180050]
Li Z L, Wang L Y, Yu J Y, Cheng B W and Hao L. 2020. Remote sensing ship target detection and recognition method. Remote Sensing Information, 35(1): 64-72
李宗凌, 汪路元, 禹霁阳, 程博文, 郝梁. 2020. 遥感舰船目标检测识别方法. 遥感信息, 35(1): 64-72 [DOI: 10.3969/j.issn.1000-3177.2020.01.008http://dx.doi.org/10.3969/j.issn.1000-3177.2020.01.008]
Li Z L, Wang L Y, Yu J Y, Hao L and Cheng B W. 2018. Space-borne SAR on-orbit imaging and ship target detection method. Spacecraft Engineering, 27(6): 41-47
李宗凌, 汪路元, 禹霁阳, 郝梁, 程博文. 2018. 星载SAR在轨成像及舰船目标检测方法. 航天器工程, 27(6): 41-47 [DOI: 10.3969/j.issn.1673-8748.2018.06.006http://dx.doi.org/10.3969/j.issn.1673-8748.2018.06.006]
Mark S, Andrew H, Zhu M L, Andrey Z and Chen L C . 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks, IEEE/CVF Conference on Computer Vision and Pattern Recognition. Proceedings, 4510-4520 [DOI:10.1109/CVPR.2018.00474http://dx.doi.org/10.1109/CVPR.2018.00474]
Novak L M, Owirka G J, Brower W S and Weaver A L. 1997. The automatic target-recognition system in SAIP. The Lincoln Laboratory Journal, 10(2): 187-202
Song W Q, Wang Y H and Liu H W. 2016. An automatic block-to-block censoring target detector for high resolution SAR image. Journal of Electronics and Information Technology, 38(5): 1017-1025
宋文青, 王英华, 刘宏伟. 2016. 高分辨SAR图像自动区域筛选目标检测算法. 电子与信息学报, 38(5): 1017-1025 [DOI: 10.11999/JEIT150808http://dx.doi.org/10.11999/JEIT150808]
Wang C, Zhang H, Wu F and Zhang B. 2013. Ship Target Detection and Classification in High Resolution SAR Images. Beijing: Science Press: 14-15
王超, 张红, 吴樊, 张波. 2013. 高分辨率SAR图像船舶目标检测与分类. 北京: 科学出版社: 14-15
Xie Y Z, Tan X B and Chen H. 2012. A new algorithm for connected components labeling. Transactions of Beijing Institute of Technology, 32(12): 1273-1278
谢宜壮, 谭许彬, 陈禾. 2012. 一种新的连通域标记算法. 北京理工大学学报, 32(12): 1273-1278 [DOI: 10.3969/j.issn.1001-0645.2012.12.013http://dx.doi.org/10.3969/j.issn.1001-0645.2012.12.013]
Xu Y F, Tan Y J, He R J and Li J F. 2010. System analysis and research overview of space-based maritime surveillance. Journal of Astronautics, 31(3): 628-640
徐一帆, 谭跃进, 贺仁杰, 李菊芳. 2010. 天基海洋目标监视的系统分析及相关研究综述. 宇航学报, 31(3): 628-640 [DOI: 10.3873/j.issn.1000-1328.2010.03.002http://dx.doi.org/10.3873/j.issn.1000-1328.2010.03.002]
Zhai L, Li Y and Su Y. 2017. A method for ship detection in SAR images based on anomaly detection and two-layer censoring mechanism. Computer Engineering, 43(4): 244-250
翟亮, 李禹, 粟毅. 2017. 基于异常检测与双层筛选机制的SAR图像舰船检测方法. 计算机工程, 43(4): 244-250 [DOI: 10.3969/j.issn.1000-3428.2017.04.042http://dx.doi.org/10.3969/j.issn.1000-3428.2017.04.042]
Zhou Y, Shen A L and Bi D P. 2020. A fast detection algorithm of vibration targets for Dual-Channel SAR. Journal of Remote Sensing, 24(9): 1143-1156
周阳,沈爱国,毕大平.2020.双通道SAR振动目标快速检测.遥感学报,24(9):1143-1156 [DOI:10.11834/jrs.20209004http://dx.doi.org/10.11834/jrs.20209004]
Zhang G H, Xu K, Duan G D, Zhao C and Liang F. 2018. A fast labeling algorithm of connected components applicable for hardware implementation. Journal of Xi'an Jiaotong University, 52(8): 95-101
张国和, 徐快, 段国栋, 赵晨, 梁峰. 2018. 一种适于硬件实现的快速连通域标记算法. 西安交通大学学报, 52(8): 95-101 [DOI: 10.7652/xjtuxb201808015http://dx.doi.org/10.7652/xjtuxb201808015]
Zhang Q J, Han X L and Liu J. 2017. Technology progress and development trend of spaceborne synthetic aperture radar remote sensing. Spacecraft Engineering, 26(6): 1-8
张庆君, 韩晓磊, 刘杰. 2017. 星载合成孔径雷达遥感技术进展及发展趋势. 航天器工程, 26(6): 1-8 [DOI: 10.3969/j.issn.1673-8748.2017.06.001http://dx.doi.org/10.3969/j.issn.1673-8748.2017.06.001]
相关文章
相关作者
相关机构