注册 登录 English Version
定量遥感 | 浏览量 : 957 下载量: 1184 CSCD: 1 更多指标
  • 导出

  • 分享

  • 收藏

  • 专辑

    • 基于地球静止气象卫星的地表参数遥感研究进展

    • Retrieval of land surface parameters from geostationary satellite data: An overview of recent developments

    • 方红亮

      12
    • 2021年25卷第1期 页码:109-125   

      纸质出版日期: 2021-01-07

    • DOI: 10.11834/jrs.20210194     

    扫 描 看 全 文

  • 引用

    阅读全文PDF

  • 方红亮.2021.基于地球静止气象卫星的地表参数遥感研究进展.遥感学报,25(1): 109-125 DOI: 10.11834/jrs.20210194.
    Fang H L. 2021 Retrieval of land surface parameters from geostationary satellite data: An overview of recent developments. National Remote Sensing Bulletin, 25(1):109-125 DOI: 10.11834/jrs.20210194.
  •  
  •  
  • HTML全文

  • 图(0) 表(7)

  • 参考文献

  • 出版信息

  • 数据统计

论文导航

摘要

地表参数定量遥感反演是遥感科学研究的重要环节。21世纪以来,地球静止气象卫星数据在地表参数遥感反演中受到越来越多的重视。本文对利用地球静止气象卫星进行地表参数遥感反演研究的进展进行了综述。文章首先简单介绍了当前正在运行的欧盟Meteosat、美国GOES-R、日本葵花和中国风云静止卫星系统,随后详细总结了不同卫星系统估算各种地表参数的方法。在此基础上,文章对进一步利用静止卫星估算地表参数的研究展开讨论,指出未来的研究应重点关注几个方面:(1)探索和运用新技术提高静止卫星数据获取和处理的效率和精度;(2)融合全球多颗静止气象卫星,同时与极轨卫星融合,生产覆盖全球的长时序地表参数产品;(3)探索地表参数的高效获取方法,对静止气象卫星地表参数产品开展真实性检验,满足地表过程研究和资源环境动态监测对高质量地表参数产品的需求。

Abstract

Since the beginning of this century, more and more attention has been given to using geostationary meteorological satellite data in the retrieval of land surface parameters. This paper gives an overview of the recent developments on the retrieval of land surface parameters from geostationary satellite data. Geostationary meteorological satellites have been developed in Europe (Meteosat), United Sates (GOES-R), Japan (Himawari), and China (FY series). The geostationary satellite data volume is usually high because of the high temporal revisit frequency, which poses great challenges to data storage, parameter retrieval and product distribution. Nonetheless, each satellite program has developed a series of land surface products to support near real-time applications.

Various methods to estimate land surface parameters are described. The Meteosat SEVIRI is leading the development of land surface products, especially the unique long-term Thematic Climate Data Record (TCDR) products. The standard products include Land Surface Temperature (LST), longwave and shortwave radiances, albedo, fraction vegetation cover, leaf area index, the fraction of absorbed photosynthetic active radiation, and gross primary production, evapotranspiration, latent and sensible heat flux, wild fire, and snow cover. Among the standard products, the LST, radiance, and albedo are also distributed in the TCDR products. GOES-R and FY-4A are also releasing similar preliminary products, but their quality still need to be fully validated. The Himawai-8 products are still in the research stage. Further physical retrieval methods and various machine learning inversion methods can be explored to improve the accuracy of parameter inversion. It is also necessary to improve the quality of auxiliary atmospheric field data and model simulations to facilitate the land surface parameter retrieval.

Multiple geostationary satellites can be integrated to provide long-term observations and global coverage. EUMETSAT has integrated all TCDR products generated from the first-and second-generation Meteosat data, and the National Oceanic and Atmospheric Administration (NOAA) has released all GOES level-1B data since 1979. These two dataset can be used to generate long-term continuous land surface products. GOES-R and Himawari-8 data have also been combined to generate high quality top-of-atmosphere reflectance and bright temperature products, which will greatly facilitate the generation of other land surface parameters. Geostationary satellite data can also be combined with the polar orbiting satellite data in land surface parameter retrieval; however, current studies are mostly carried out on small regional scales, whereas national and global studies are relatively deficient.

Land surface parameters retrieved from geostationary satellites can be validated through comparison with concurrent ground measurements, polar orbiting satellite products and model simulations. However, simultaneous real-time surface data are lacking. On the other hand, current geostationary meteorological satellite data are in the kilometric spatial resolution and are limited for high resolution applications. With its high temporal and spatial resolutions (50 m), the GF-4 satellite launched by China provides a great potential for high resolution land surface monitoring and is worthy of further exploration.

Future researches using geostationary satellite data to estimate land surface parameters include: (1) exploration of new techniques to improve the efficiency and accuracy of geostationary satellite data acquisition and processing; (2) integration of multiple geostationary and polar-orbiting satellite data to produce long term global land surface parameters; (3) exploration of automatic field measurement methods to enhance the validation of land surface parameters derived from geostationary satellite data.

关键词

遥感; 静止气象卫星; 地表参数; 气候数据记录; MSG SEVIRI; GOES-R ABI; Himawai-8 AHI; FY-4A AGRI

Keywords

geostationary meteorological satellite; land surface parameters; Climate Data Record (CDR); MSG SEVIRI; GOES-R ABI; Himawai-8 AHI; FY-4A AGRI

1 引 言

地表特征参数如地表温度、地表辐射、植被指数和地表蒸散发(ET)等是研究陆地生态系统碳循环、水循环和能量循环的重要参数。定量遥感研究的一个重要环节就是从不同的卫星观测数据中获取这些重要的地表特征参数(

李小文,2006)。传统上,地表参数都是由极地轨道卫星获取,比如知名的卫星Landsat、SPOT、NOAA、Terra和Aqua等,目前已形成了系列成熟产品,在地球系统科学研究中发挥了巨大的作用和影响力(比如MODIS,https://modis.gsfc.nasa.gov/[2020-06-08])。

21世纪70年代后期,美国和欧盟分别发射了首颗静止气象卫星GOES-1(1975年)和 Meteosat-1(1977年),分别由美国国家海洋与大气局(NOAA)和欧洲气象卫星应用组织(EUMETSAT)运营。后续美国和欧盟又分别发射了一系列静止气象卫星,形成了连续稳定的观测序列。日本也于1977年发射了第一颗葵花(Himawari)静止气象卫星,由日本气象局运行。俄罗斯(1994年)、印度(2002年)和韩国(2010年)都先后发射了各自的静止气象卫星(http://rammb.cira.colostate.edu/dev/hillger/geo-wx.htm[2020-06-08])。

中国于1997-06-10发射了第一颗试验型静止气象卫星风云二号A星(FY-2A),这之后的FY-2系列卫星构成了中国第一代地球轨道静止气象卫星。作为世界气象组织全球业务卫星序列中的一员,中国气象卫星构成了全球综合地球观测系统的重要组成部分,为区域乃至全球许多国家的经济发展做出了重要贡献(

陆风 等,2017)。风云四号(FY-4)气象卫星是中国目前第二代的静止气象卫星,其设计与美国最新一代气象卫星GOES-R相当(Yang 等,2017)。

虽然静止气象卫星主要为气象业务服务,由于地球静止卫星重复观测频率高,空间覆盖范围广,业务化水平高,研究人员也一直在利用静止气象卫星开展地表参数估算的研究。早在20世纪80年代,就有研究利用GOES卫星估算地表温度(Chen 和Allen,1987)、太阳入射辐射(

Gautier 等,1980Frulla 等,1988)、地表反照率(Cess 和Vulis,1989)和土壤湿度(Carlson 等,1984)等参数。与此同时,Meteosat卫星也在地表参数估算研究中得到诸多应用,比如估算地表太阳入射辐射(Dedieu 等,1987)、地表反照率(Dedieu 等,1987Pinty 等,1985)以及ET和能量通量(Rosema 和Fiselier,1990)等。

进入21世纪,随着地球静止卫星技术日渐成熟,利用静止卫星反演地表参数发展迅速,开始受到了定量遥感界越来越多的关注。欧盟、美国和中国都分别利用各自的静止卫星平台开始业务化的地表参数产品生产,比如中国建立的风云卫星数据和产品服务系统(http://satellite.nsmc.org.cn/portalsite/default.aspx[2020-06-08])。海量静止卫星数据为地表碳循环、能量和水循环研究带来了新的机遇和挑战(

Anderson 等,2012),推动了地表过程研究的进一步深化发展。与此同时,高时频卫星数据也在各种环境和灾害,如森林破坏与恢复、洪水、野火、沙尘暴和火山灰等的快速监测和响应中发挥了极其重要的作用(Zhang 等,2019)。

本文对目前业务运行的欧盟、美国、日本和中国的静止气象卫星进行了分析,对它们各自的地表参数反演算法进行了总结,对当前和未来的发展进行了讨论。本文涉及的地球静止卫星大多是静止气象卫星,在讨论中也包括个别非气象应用卫星,如中国的高分四号卫星(GF-4)。

2 MSG静止卫星

EUMETSAT运营的Meteosat系列卫星目前是第二代(MSG),共有8—11号4颗,每颗卫星设计运行时间7 a,布置在不同的定点位置。Meteosat-11是目前在轨运行的主要卫星,每15 min提供一个全圆盘图像。Meteosat-10和Meteosat-9提供快速扫描服务,每五分钟可对欧洲、非洲和周边地区进行扫描一次。MSG搭载旋转增强可见近红外成像仪(SEVIRI),共有12个波段,其中高分辨率可见光波段1 km,其他波段3 km(表1)。

表1  目前运行的主要静止气象卫星及成像仪
Table 1  Major operational geostationary satellites and the imagers
国家/组织卫星成像仪发射日期定点位置波段数空间分辨率网址
欧盟 Meteosat-11 SEVIRI 2015-07-15 12 1 km (VIS), 3 km WWW1
美国 GOES-16 (GOES-R) ABI 2016-11-19 75.2°W 16 0.5 km (0.64μm), 1.0 km (VIS-NIR), 2 km (>2.0 μm) WWW2
日本 Himawari-8 AHI 2015-07-07 140.7°E 16 0.5 km (0.65 μm), 1.0 km (VIS-NIR), 2 km (>1.6 μm) WWW3
中国 FY-4A AGRI 2016-12-11 99.5°E 14 0.5-1.0 km (VIS-NIR), 2.0-4.0 km (>1.3 μm) WWW4

注:   WWW1 卫星和传感器(https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Meteosat/index.html[2020-06-08]),产品(https://landsaf.ipma.pt/en/about/catalogue/[2020-06-08])WWW2 卫星和传感器(http://www.goes-r.gov/[2020-06-08]),产品(https://www.ncdc.noaa.gov/data-access/satellite-data/goes-r-series-satellites[2020-06-08])WWW3 卫星和传感器(http://www.jma.go.jp/jma/jma-eng/satellite/[2020-06-08])WWW4 卫星和传感器(http://fy4.nsmc.org.cn/portal/cn/satellite/FY4A.html[2020-06-08]),产品 (http://fy4.nsmc.org.cn/portal/cn/theme/FY4A_product.html[2020-06-08])。

icon 下载:  导出CSV icon 下载:  下载表格图片

2.1 标准产品

Meteosat提供了完整体系的地表系列产品(表2),目前的地面产品主要是由Meteosat-11的SEVIRI传感器生产(https://landsaf.ipma.pt/en/about/catalogue/[2020-06-08])。SEVIRI产品的各种算法都比较简洁高效,计算效率高,以实用为主,有很多都是在上世纪开发。计算过程中需要EUMETSAT临近预报系统(NWC SAF,http://www.nwcsaf.org/[2020-06-08])的云掩膜信息以及欧洲中期天气预报中心(ECMWF,https://www.ecmwf.int/[2020-06-08])的大气压、水汽含量等信息。除了火灾风险图,目前只提供欧洲区(2010.2—)产品,其他所有参数都提供全圆盘3 km产品(表2)。产品以HDF5格式发布,并提供逐像元质量控制层。

表2  MSG SEVIRI 准实时(NRT)和气候数据记录(CDR)产品
Table 2  MSG SEVIRI near real time (NRT) and climate data record (CDR) products
参数时间分辨率空间分辨率NRT覆盖时段CDR覆盖时段目标误差(Accuracy)*
地表温度 15’ 3 km 2005-05— 2004—2015 2 K (RMSE)
10 d 3 km 2015-11— 2 K (RMSE)
下行长波和短波辐射 30’ 3 km 2005— 2004—2015 10%
1 d 3 km 2015-11— 10%
总下行地表短波辐射 15’ 3 km 2020-04— 20 (TDSSR<200 W/m2), 10% (TDSSR≥200 W/m2)
散射比 15’ 3 km 2020-04— 0.1 (fd<0.5), 20% (fd≥0.5)
反照率 1 d 3 km 2005-05— 2004—2015 10%
10 d 3 km 2009-02— 2004—2015 10%
植被覆盖度/叶面积指数/光合有效辐射吸收效率 1 d 3 km 2006-01— 2004—2015 20%/40%/20%
10 d 3 km 2013-01— 20%/40%/20%
总初级生产力 10 d 3 km 2018-03— 67%
蒸散发 30’ 3 km 2005-04— 25% (ET>0.4 mm/h), 0.1 mm/h (其他)
1 d 3 km 2010-12— 20% (ET>2.5 mm), 0.5 mm (其他)
潜热 30’ 3 km 2019-03— 25% (LE>250), 63 W/m2 (其他)
显热 30’ 3 km 2019-03— 35% (H>250), 87.5 W/m2 (其他)
参考ET 1 d 3 km 2016-01— 2004—2015 10%
火点探测 15’ 3 km 2010-04— 5% (与MODIS比较)
火点辐射能量 15’ 3 km 2008-03— 2004—2015 n.a.
火点辐射能量(格网) 1 h 2008-07— 2004—2015 n.a.
火险图(欧洲) 1 d 3 km 2010-02— 5.0
积雪覆盖 1 d 3 km 2005-01— 75% (林区) /90%

注:   * 除了标注项目和文中说明,一般表示为绝对或相对误差。数据来自(https://landsaf.ipma.pt/en/about/catalogue/[2020-06-08])除了火险图覆盖欧洲区,其余产品覆盖全圆盘。TDSSR:总下行地表短波辐射。

icon 下载:  导出CSV icon 下载:  下载表格图片

2.1.1 地表温度

地表温度产品提供15 min和每旬的晴空地表温度信息。计算方法为通用的辟窗算法(Wan 和Dozier,1996),该方法通过两个相邻红外波段(10.8 μm和12.0 μm)对大气的不同吸收率来进行大气校正并计算地表温度。计算中所需的地表比辐射率数据通过植被覆盖度估算得到。

2.1.2 长波与短波辐射

地表下行短波辐射(DSSR,W/m2)是指到达地表的0.3—4.0 μm范围内的辐射能量。DSSR的估算按晴天和有云情况用不同的算法。有云时先估算大气顶层(TOA)反照率,然后通过辐射传输模型基于3个短波波段(0.6 μm、0.8 μm和1.6 μm)估算DSSR (

Geiger 等,2008b)。晴空时,先通过大气成分参数计算大气有效透射率,然后直接计算DSSR。最近,考虑到大气气溶胶变化,Carrer等(2019)又提出了一个改进DSSR和散射比例估算的方法。

地表下行长波辐射(DSLR,W/m2)的波长范围为4.0—100 μm。由于卫星无法直接探测DSLR,SEVIRI先根据ECMWF模型的气温和水汽数据以及卫星观测到的云量情况大致赋值(

Prata,1996),然后利用MODTRAN得到的拟合关系进一步进行参数调整得到输出结果。无论DSSR还是DSLR,都需要NWC SAF关于云掩膜和ECMWF模式大气水分含量等辅助信息。DSSR和DLSF提供30分钟和逐日产品,另外还同时提供15分钟的瞬时总体DSSR和散射比率产品。

2.1.3 反照率

SEVIRI基于3个短波波段(0.6 μm,0.8 μm,1.6 μm)计算得到地表的可见光、近红外和总体短波波段反照率(

Geiger 等,2008a)。SEVIRI先利用一个简单的大气辐射传输模型SMAC做大气纠正(Rahman 和Dedieu,1994),用线性核驱动二向性反射率分布函数(BRDF)模型(Roujean 等,1992)对日内反射率做多角度反射率拟合并得到反照率产品。产品包括逐日和每旬中午时刻的方向半球(黑空)反照率和半球—半球(白空)反照率。

2.1.4 植被参数

SEVIRI的植被参数包括植被覆盖度(FVC)、叶面积指数(LAI)和光合有效辐射吸收效率(FAPAR)以及总初级生产力(GPP)等(

García-Haro 等,2019)。FVC基于3个短波波段通过光谱混合分解(SMA)方法推导得到,首先构建不同土壤和植被比例的训练数据集,然后基于贝叶斯模型计算各组分的比例(García-Haro 等,2005)。FVC数据都已经过入射角、视场角以及各向异性校正。

LAI产品通过与FVC的半经验关系估算得到(

Roujean 和 Lacaze,2002):

FVC=1-exp(-b·G(0)·Ω·LAI)
(1)

式中, b为冠层后向散射参数,假设为0.945,G(0)为太阳天顶角为0°时叶片投影函数,在假设叶倾角球形分布的情况下G(0)=0.5。Ω为聚集指数,算法根据不同生态型赋值一个静态的聚集指数数据(

Chen等,2005)。显然,LAI的精度受输入的FVC和Ω精度的影响。

FAPAR则利用经验统计关系从一个简单的重归一化差值植被指数(RDVI)进行估算(Roujean 和Bréon,1995),该经验关系基于SAIL模型在主平面的模拟得到(太阳天顶角45°,观测天顶角60°)(

Verhoef,1984)。

GPP根据光能利用率(LUE)计算(

Monteith,1972

GPP = PAR × FAPAR × LUE
(2)

式中,PAR为光合有效辐射,LUE跟水胁迫因素有关,可从SEVIRI每天的实际和参考ET产品计算得到。SEVIRI先根据DSSR和FAPAR计算每天的GPP,然后生产旬产品(

Martínez 等,2018)。4个植被参数产品中,GPP只有旬产品,其他3个参数都提供逐日和旬产品。FVC,LAI和FAPAR产品的目标精度分别为20%、40%和20%。

2.1.5 ET与能量通量

SEVIRI通过卫星观测所得到的辐射信息、生物物理参数,土壤湿度和辅助气象数据来驱动SVAT物理模型计算ET(mm/h)、潜热和显热通量(W/m2)(

Ghilain 等,2012),其中的土壤湿度通过地表温度和地表同化系统得到。基础地理信息使用ECOCLIMAP的土地覆盖数据,并假设每个像元由土壤、草地、农田或森林组成。经过初步验证,瞬时ET误差在20%—25%。SEVIRI同时提供一个逐日的参考ET产品(2016.1— ),代表了在逐日下行短波辐射条件下,假设地表反照率为0.23,高度为12 cm且水分条件良好的草地,在特定的下行短波辐射条件下的ET。参考ET主要用于估算不受作物品种、生产条件和管理措施影响的大气蒸发需求(de Bruin 等,2016)。

2.1.6 野火

SEVIRI火点探测与监测主要利用火点像元与周边像元的辐射差异做阈值分割得到(

Amraoui 等,2010)。常温地物的辐射峰值区一般在10 μm附近,SEVIRI则利用3.9 μm探测高温野火辐射。探测到火点像元后,随即通过火点辐射能量(FRE)与中红外辐射(3.9 μm)的相关关系得到瞬时FRE产品(Wooster 等,2003)。在瞬时火点辐射能量产品基础上进行升尺度,并校正云下火和小火点就可得到逐小时5°格网的FRE产品。

综合火点监测情况、植被信息以及ECMWF天气预报情况(气温、相对湿度、风速和24小时累计降水),SEVIRI进一步对未来3天的野火风险等级进行预测并生产火灾风险图。该图目前只覆盖欧洲区,时间上自2010-02起始,火险等级计算参考了加拿大林火风险分级系统(

van Wagner,1987),目标风险误差为5.0(按0—100分级)。

2.1.7 积雪覆盖

积雪覆盖产品从可见光和红外波段观测得到的辐射、亮温和地表温度信息来判定是云像元、完全积雪、部分积雪还是无雪像元(Siljamo 和Hyvärinen,2011)。该算法依靠NWC SAF提供云掩膜信息,先得到15 min的积雪覆盖信息然后融合成逐日产品。目标精度在林区为75%,其他区域则为90%。

2.2 气候数据记录(CDR)产品

SEVIRI对历年获取的准实时产品利用新算法进行了再处理,选择其中的高质量数据形成连续的气候数据记录(CDR)产品(

García-Haro 等,2019),包括2004年—2015年的地表温度、长波和短波辐射、反照率、植被参数、ET和野火数据(表2)。所有CDR产品均提供广播或推送服务,2015年以后则可直接使用准实时产品。

EUMETSAT进一步整合了所有第一和第二代的Meteosat数据,利用统计和模型反演方法生成了1991年—2015年的地表温度产品,形成了专题气候数据记录(TCDR)(

Duguay-Tetzlaff 等,2015)(表3)。与此同时,EUMETSAT还利用所有第一代Meteosat数据(MFG)生成了太阳辐照度和反照率产品(表3),并利用反照率产品监测南撒哈拉(Sahel)地区的地表干旱变化情况(Loew 和 Govaerts,2010;Govaerts 和Lattanzio,2008)。表3中的TCDR产品与表2中MSG的CDR产品联合形成了1982年以来长时间的连续地表产品,如反照率、入射辐射等。

表3  EUMETSAT利用Meteosat生产的专题气候数据记录(TCDR)产品
Table 3  Thematic climate data record (TCDR) generated by EUMETSAT from Meteosat satellite data
参数传感器时期/年时间分辨率空间分辨率数据引用(DOI)
地表温度 MFG/MSG 1991—2015 1 h, 1 mo 0.05° 10.5676/EUM_SAF_CM/LST_METEOSAT/V001
辐照度 MFG 1983—2005 1 h, 1 d, 1 mo 0.03° 10.5676/EUM_SAF_CM/RAD_MVIRI/V001
反照率 MFG 1982—2006 10 d, 1 mo 3 km 10.15770/EUM_SEC_CLM_0001

注:  MFG:Meteosat First Generation; MSG: Meteosat Second Generation。

icon 下载:  导出CSV icon 下载:  下载表格图片

2.3 研究产品及应用

除了标准产品外,一些研究者利用SEVIRI数据反演地表太阳入射辐射和PAR(

Schiller,2006)或者是地表比辐射率(Jiang 等,2006)。Proud等(2014)引入MODIS算法从SEVIRI得到归一化的地表逐日反射率(NBAR)。Fensholt等(2010)利用SEVIRI反射率数据计算了一个水胁迫指数进而估算植被的水胁迫状况。

SEVIRI的逐日产品在许多研究中都得到了应用。比如,

Verhoef等(2012)利用SEVIRI的地表温度数据作为模型输入估算土壤热通量。Guan等(2014)利用SEVIRI逐日的LAI估算非洲大陆植被物候变化趋势。同样在非洲热带雨林物候研究中,Yan等(2016)发现SEVIRI能获取比MODIS多80%的高质量植被指数数据。

3 GOES-R静止卫星

GOES-R系列静止气象卫星是目前NOAA运行的最新一代静止气象卫星。该系列卫星包括GOES-R(GOES-16),GOES-S(GOES-17),GOES-T,GOES-U等4颗卫星,其中前两颗星分别在2016.11.19和2018.3.1发射运行,分别定轨在75.2°W和137.2°W,后两颗预计在2021年和2024年发射(http://www.goes-r.gov/[2020-06-08])。GOES-R上搭载了数个传感器,与陆面产品相关的传感器主要是高级基线成像仪(ABI)。ABI有16个波段,空间分辨率分别为0.5 km(0.64 μm),1.0 km(可见光—近红外)和2.0 km(>2 μm)(表1)。ABI有3种观测模式,分别对全圆盘、美国大陆(3000 km×5000 km)和中尺度区域(1000 km×1000 km)提供不同时间频率和空间分辨率的观测。时间分辨率分别为全圆盘15 min以及美国大陆的5 min。中尺度区域观测由用户制定,提供特定感兴趣区域的高时频观测,可在30或60 s观测一次。

3.1 标准产品

在众多GOES-R产品中,主要的是大气产品,少数的几个地面产品包括地表温度、下行短波辐射、火点/热点和积雪覆盖度等(https://www.goes-r.gov/products/overview.html#ABI[2020-06-08],表4)。在地面产品生产过程中,需要NOAA国家环境预报中心(NCEP)的数值天气预报数据作为辅助(https://www.ncep.noaa.gov/[2020-06-08])。4个地表产品中除了下行短波辐射是经纬度坐标,其他三个都使用格网坐标和GRS80地球椭球体,产品格式为netCDF-4,目前产品还处于试运行阶段(provisional),可通过NOAA综合数据中心(CLASS,https://www.class.noaa.gov[2020-06-08])或环境信息中心(NCEI,https://www.ncei.noaa.gov/products[2020-06-08])获取。

表4  GOES-R ABI陆表产品及项目需求指标
Table 4  GOES-R ABI land surface products and project requirements
参数覆盖范围时间分辨率空间分辨率/km覆盖时段误差精度制图误差/km
地表温度 全圆盘 1 h 10 2017-05-24— 2.5 K 2.3 K 5
美国大陆 1 h 2 2017-05-24— 2.5 K 2.3 K 1
中尺度区域 1 h 2 2017-05-24— 2.5 K 2.3 K 1
下行短波辐射 全圆盘 1 h 50 2017-06-23— 65—110 W/m2 100—130 W/m2 4
美国大陆 1 h 25 2017-06-23— 65—110 W/m2 100—130 W/m2 2
中尺度区域 1 h 5 2017-06-23— 65—110 W/m2 100—130 W/m2 1
火点/热点温度 全圆盘 15’ 2 2017-05-24— 2 K 2 K 1
美国大陆 5’ 2 2017-05-24— 2 K 2 K 1
积雪覆盖 全圆盘 1 h 2 2017-12-12— 0.15 0.30 1
美国大陆 1 h 2 2017-12-12— 0.15 0.30 1
中尺度区域 1 h 2 2017-12-12— 0.15 0.30 1

注:   表4来源网址https://www.goes-r.gov/products/overview.html#ABI[2020-06-08],美国大陆和中尺度区域分布覆盖3000 km × 5000 km以及1000 km × 1000 km范围。

icon 下载:  导出CSV icon 下载:  下载表格图片

3.1.1 地表温度

ABI地表温度产品从14和15波段(11.2 μm和12.3 μm)L1B的亮温数据运用分裂窗算法反演得到(

Ulivieri 等,1994),反演过程中需要NCEP的水汽含量、降水和云雪覆盖等辅助信息,计算中对白天和夜晚以及干湿大气使用了不同的反演系数(Yu 等,2009)。地表温度产品的太阳天顶角限制在85°以内。与MODIS地表温度产品相比,二者偏差基本在2 K以内,但在山区偏差较大,甚至可达到10 K(Beale 等,2020)。

3.1.2 下行短波辐射

地表下行短波辐射产品利用1—6波段的反射率作为输入数据,利用查找表方法计算地表瞬时直射和漫射短波辐射产品(W/m2),生产时需要云、气溶胶和降水等辅助信息。该算法有直接和间接两种计算方式,直接方法利用ABI的云和气溶胶产品以及地表反照率数据直接估算(Charlock 和Alberta,1996),当输入ABI产品有缺失时则启用间接算法,从TOA反照率反演得到下行短波辐射产品(

Pinker 和 Laszlo,1992)。

3.1.3 火点与热点

火点温度产品从L1B短波反射波段、中红外和热红外发射波段图像经过一系列阈值分割计算得到,主要原理是基于第7波段(3.9 μm)对亚像元中高温异常的敏感性特征,其中需要用到NCEP的降水数据作为辅助,另外需要波段2数据(0.64 μm)用于云剔除和计算地表反照率(

Prins 和 Menzel,1994)。火点/热点产品包括火点掩膜、火点温度(K),过火面积(km2)和辐射能量(MW),其中掩膜信息主要是关于火点像元的质量信息。火点温度产品只包括陆地范围,观测天顶角限制在80°以内,太阳天顶角在10°—180°,太阳闪烁角(sun glint angle)大于10°。

3.1.4 积雪覆盖度

ABI借鉴了MODIS利用归一化差值积雪指数(NDSI)提取积雪覆盖产品的方法,从地表多波段多角度反射率数据中基于混合像元分解方法提取积雪覆盖比率(

Painter 等,2009)。积雪产品生产中需要用到GOES-R云覆盖信息。

3.2 开发中产品及应用研究

GOES-R项目设计时还计划生成洪水、冰覆盖、平原积雪厚度、地表反照率、比辐射率、植被覆盖度和植被指数(NDVI)等地表产品(https://www.goes-r.gov/syseng/docs/MRD.pdf[2020-06-08]),因为优先级的原因,目前这些产品还在逐步生产中(表5)。

表5  GOES-R ABI待生产陆表产品及项目需求指标
Table 5  GOES-R mission requirements for land surface parameters
覆盖范围时间分辨率/h空间分辨率/km误差精度滞后时间/h制图误差/km
洪水/积水 全圆盘 1 10 60% N/A 6 5
中尺度区域 1 10 60% N/A 6 5
冰覆盖 全圆盘 3 2 85% N/A 24 1
积雪厚度(平原) 全圆盘 1 2 9 cm 15 cm 1 1
美国大陆 1 2 9 cm 15 cm 1 1
中尺度区域 1 2 9 cm 15 cm 1 1
地表反照率 全圆盘 1 2 0.08 10% 1 2
比辐射率 美国大陆 1 10 0.05 0.05 1 5
植被覆盖度 全圆盘 1 2 0.10 0.10 1 1
美国大陆 1 2 0.10 0.10 1 1
植被指数(NDVI) 全圆盘 1 2 0.04 0.04 1 1
美国大陆 1 2 0.04 0.04 1 1

注:   数据来源(https://www.goes-r.gov/syseng/docs/MRD.pdf)。

icon 下载:  导出CSV icon 下载:  下载表格图片

除了上述业务产品,围绕GOES-R还有一些探索性研究工作。

Zheng等(2008)提出基于MODTRAN大气辐射传输模拟和查找表方法,直接从GOES-12大气顶层辐射值估算地表PAR。运用类似方法,He等(2019)从GOES-R ABI估算每天的气溶胶光学厚度和地表二向性反射率因子(BRF),然后计算“黑空”反照率和地表方向反射率。

美国宇航局(NASA)的GeoNEX项目对GEOS-R数据进行大气校正获得了地表反射率产品,可用于植被指数估算和LAI以及FAPAR等参数的反演(https://www.nasa.gov/nex/[2020-06-08])。

Fang等(2019b)开发了一个从GOES估算地表ET的算法,该算法曾用于从GOES-13和GOES-15生成8 km的ET产品,目前用于从GOES-16和GOES-17第13波段计算ET。该方法从上午地表温度的上升过程来推算地表ET,需要输入的数据包括ABI地表温度和NCEP气温、位势高度、湿度、气压、风速和长波辐射等气象信息,另外需要土地覆盖、LAI、反照率和云掩膜等辅助信息。

4 葵花静止卫星

葵花(Himawari)系列静止气象卫星目前在轨运行的有Himawari-8和Himawari-9号两颗卫星,分别于2015-07-07和2016-11-02发射,定点位置140.7°E。目前葵花-8号做主要观测,9号星待机作为备用,在2022年后两颗卫星主备用互换,两颗星预计运行到2029年。Himawari-8和Himawari-9号卫星上搭载了先进葵花成像仪(AHI),有16个波段,其空间分辨率为1 km(可见光—近红外)和2 km(>1.6 μm),其中0.65 μm为0.5 km(表1)。

葵花卫星本身主要作为气象部门的业务卫星,其产品主要是大气特征参数,如大气运动矢量、晴空辐射、云和气溶胶特征以及海面风场等。官方地表产品,目前只有Beta版本的地表短波辐射和野火产品,还没有形成系统的业务化地表参数产品(https://www.eoyc.jaxa.jp/ptyee/useiguide.htmt[2020-06-08])。由于葵花传感器良好的几何和辐射特性,利用AHI进行地表植被、能量循环参数和应急响应方面的研究非常活跃。

4.1 地表参数研究

4.1.1 植被参数

利用静止气象卫星的高时频特征,一些研究人员利用AHI准实时反射率和植被指数数据开展了植被物候监测研究 (

Miura 等,2019)。Ma等(2020)从10 min的高频AHI数据中反演BRDF模型参数,进而计算天底反射率以及归一化的NDVI和增强植被指数(EVI),并从时序植被指数中计算物候指标。Yan等(2019)对AHI计算得到的EVI2做了角度调整,然后用于估算北日本地区的物候特征并与MODIS和地面观测得到的结果做了比较,展示了高频AHI数据在春季植被快速生长阶段具有的优势。需要注意的是,由于静止气象卫星的多角度观测特征,利用植被指数进行物候研究需要进行角度归一化处理,以消除角度不同引起的伪变化。

在获得了AHI的反射率和植被指数以后,可以进一步进行LAI和FAPAR的估算。例如,

Chen等(2019)基于AHI NDVI和MODIS LAI/FAPAR产品训练了一个神经网络,利用该网络来估算每天的LAI和FAPAR并评估了典型植被的不同物候变化曲线。

4.1.2 地表温度

与SEVIRI和ABI类似,AHI地表温度也常常利用辟窗算法由热红外波段的亮温信息反演得到。例如,

Choi和Suh(2018)基于MODTRAN4大气辐射传输模拟,开发了一个从AHI第13和15波段(10.4 μm和12.4 μm)亮温反演地表温度的线性辟窗算法,反演获得的地表温度与MODIS标准产品的均方根误差(RMSE)在2 K以内。

4.1.3 长波与短波辐射

基于遥感估算地表辐射通常包括经验统计方法、基于辐射传输模型的方法以及机器学习方法等,这些方法都曾用于从AHI估算地表辐射。

吴晓等(2018)通过全球晴空大气廓线的红外辐射传输模拟和统计回归,建立了由AHI估算晴空实时地表上行、下行长波辐射通量的反演方法。马润等(2019)基于大气辐射传输模式构建了估算DSSR的查找表,并借助云和气溶胶等辅助参量,计算得到了DSSR。Yu等(2019)则提出利用一个简单的平板模型从AHI估算DSSR,该模型将整个大气层假设为一层晴空无云大气叠加在云层上。与以上方法不同,Hou等(2020)提出了直接用随机森林(RF)算法从16个AHI波段的TOA辐射值估算DSSR,该方法利用地面站点实测数据作为训练数据集,同时需要MERRA-2的水汽数据以及地形和日长和太阳高度角等辅助信息。

4.1.4 反射率与反照率

地表反射率产品通过对TOA辐射值的大气校正得到。

Li等(2019)利用MAIAC大气校正方法,生产了AHI短波波段1 km, 10 min的地表反射率和BRDF参数产品。该研究还发现,与Terra/Aqua MODIS相比,AHI获得了多达35%的无云观测。He等(2019)也从AHI估算了逐日的地表反射率和反照率,反演所得的方向反射率与AERONET实测数据相比拟合较好。

4.2 应急响应应用研究

4.2.1 火情监测

与SEVIRI和ABI类似,AHI火点探测的基本原理也是基于中红外和热红外的亮温异常状况以及不同波段增长幅度差异进行阈值判断(

Xie 等,2018陈洁 等,2017赵文化 等,2019)。Xu等(2017)借鉴了SEVIRI野火探测的方法(Wooster 等,2003),结合AHI进行阈值调整来进行火点探测和火点辐射能量的估算,得到了每10 min的火点像元中心信息。Liu等(2018)计算得到了澳大利亚灌丛野火的准实时蔓延速度。Wickramasinghe等(2016)提出首先利用AHI中红外(2 km)探测火点像元,然后进一步利用近红外(1 km)和红波段(500 m)数据探测过火区域和烟雾,综合算法能进行10分钟500 m分辨率的野火探测。在澳大利亚的研究表明,AHI能提前探测到火点,与MODIS和VIIRS火点产品相比,也减少了漏探比例(Wickramasinghe 等,2020)。Jang等(2019)在韩国利用自适应阈值分割方法监测林火像元,然后用随机森林机器学习模型过滤误分像元,可以在10 min内检测出超过一半的着火点。

4.2.2 积雪覆盖

在常用的归一化差值积雪指数(NDSI)基础上,

Wang等(2019)开发了一个动态的积雪指数,在青藏高原针对裸土与植被区分别进行了积雪覆盖度估算,与Landsat 8 OLI的积雪覆盖度相比,决定系数(R2)在0.81以上。

4.2.3 沙尘检测

张海香等(2018)提出基于11.2 μm与12.4 μm波段亮温的动态阈值进行沙尘检测的方法,应用于中国西北地区沙尘天气信息的提取,提升了沙尘检测的精度,还成功进行了夜间沙尘信息的提取。

5 风云静止卫星

5.1 FY-4A标准产品

风云四号系列气象卫星的首颗卫星FY-4A于2016-12-11发射,定点位置99.5°E(http://fy4.nsmc.org.cn/portal/cn/theme/FY4A.html[2020-06-08])。与地表相关的仪器主要是多通道扫描成像辐射计(AGRI),有14个波段(6个可见/近红外波段,2个中波红外波段,2个水汽波段和4个长波红外波段),空间分辨率可见/近红外波段为0.5—1 km、红外波段为2—4 km(表1)。

FY-4A AGRI地表参数可以从风云卫星遥感数据服务网得到(http://satellite.nsmc.org.cn/portalsite/default.aspx[2020-06-08])。该站点提供的陆表产品和部分辐射产品都与地表有关,其中陆表产品包括火点/热点检测、地表比辐射率、积雪覆盖、地表温度和反照率等。辐射类产品主要是反映地气系统的辐射收支情况,包括地表下行长波辐射、地表入射太阳辐射和地表上行长波辐射等(表6)。

表6  FY-4A AGRI地表和辐射类产品
Table 6  FY-4A AGRI land surface and radiance products. Spatial coverage
时间分辨率空间分辨率覆盖时段
地表温度 15’ 4 km 2019-08-01—
反照率 15’ 4 km
火点/热点监测 15’ 4 km
比辐射率 15’ 12 km 2019-01-18—
积雪覆盖 15’ 4 km
下行长波辐射 15’ 4 km 2019-01-18—
入射太阳辐射 15’ 4 km 2018-03-12—
上行长波辐射 15’ 4 km 2019-01-18—

注:   数据参见http://satellite.nsmc.org.cn/portalsite/default.aspx[2020-06-08];覆盖范围均为全圆盘。

icon 下载:  导出CSV icon 下载:  下载表格图片

AGRI所有地表参数都提供每15 min的准实时产品,空间分辨率为4 km,其中比辐射率为12 km。本文成文时,辐射类产品已全部上线,陆表产品已上线地表比辐射率和陆表温度产品。产品为NetCDF格式。但目前关于产品的算法文档和验证文档还待进一步完善。

5.2 FY-4A地表参数应用研究

除了FY-4A标准产品,研究人员也利用AGRI数据进行了大量的地表参数遥感反演研究。

吴晓(2014)通过大量的红外辐射传输模拟,建立了地表下行长波辐射通量和AGRI热红外亮温间的统计回归关系,并通过该关系来估算地表下行长波辐射通量。Yang等(2019)利用AGRI云图中得到云移动向量,进而估算中国西北荒漠地区的地表太阳辐照度。

AGRI火点探测与动态评估方法也是基于多波段的辐射信息差异(

Zhang 等,2019)。有火时,中红外和热红外的辐射都会上升,但热红外的上升幅度不如中红外,同时热红外波段间的上升幅度也会不同。如果对热红外和中红外的辐射值取加权平均,这一加权平均值对火点像元要比无火像元大得多。

在干旱快速监测方面,

李亚男等(2019)对AGRI L1数据进行大气纠正获得了地表反射率数据,在此基础上计算垂直干旱指数(PDI)并对河北省进行干旱监测。国家卫星气象中心国家重点研究计划建立了高时频遥感监测数据云平台(http://47.92.131.205:8080/GEO-Quick/f/index[2020-06-08])。该平台研究了不同卫星系统的在线融合及协同分析技术,汇集了风云四号、葵花八号和高分四号等静止卫星数据,能实时生成东半球地表温度、火点监测和紫外辐射等产品。除了上述应用研究,FY-4A的非气象应用还包括气溶胶与烟尘监测、火山灰探测与航空应用、水体探测与浮游藻类监测等(Zhang 等,2019)。

5.3 FY-2产品与应用研究

风云二号气象卫星(FY-2)是中国自行研制的第一代地球轨道静止卫星,第一颗试验型卫星FY-2A于1997-06-10发射。首批地表参数产品则由2004-10-19发射的FY-2C开始生产。2018-06-05发射的FY-2H星,定位在79°E,为西亚、中亚、非洲和欧洲等“一带一路”沿线国家和地区提供良好的高频次观测。国家卫星气象中心利用风云二号系列业务卫星(FY-2C至FY-2H)生产了自2005年以来的地表温度、入射太阳辐射、积雪覆盖和沙尘监测等地表信息产品(表7)。

表7  风云二号系列卫星VISSR部分地表产品覆盖时段和时间分辨率
Table 7  Sample land surface parameters derived from VISSR onboard FY-2 satellite series
卫星定点位置地表温度入射太阳辐射积雪覆盖沙尘监测
FY-2C 105°E

2005-06-09—

2009-11-24 (1 d)

2005-06-14—

2009-11-24 (1 d)

2005-06-20—

2009-11-24 (1 h)

FY-2D 86.5°E

2007-02-14—

2015-06-30 (1 d)

2007-07-06—

2015-06-30 (1d, 10 d)

2007-05-24—

2015-06-30 (30’)

FY-2E

105°E/86.5°E

(2015-07-01后)

2009-12-10—

2019-01-17 (1 d)

2010-01-07—

2019-01-17 (1d)

2010-01-28—

2019-01-17(1 h)

FY-2F 112°E

2012-11-20—

(1 h, 1 d, 5 d, 10 d, 1 mo)

2012-11-11—

(1 d)

2012-11-09—

(1 d, 10 d)

2012-10-31—

(30’)

FY-2G 105°E

2015-06-03—

(1 h, 1 d, 5 d, 10 d, 1 mo)

2015-06-03—

(1 d)

2015-06-03—

(1 d, 10 d)

2015-06-03—

(1 h)

FY-2H 79°E

2018-06-05—

(1 h, 1 d, 5 d, 10 d, 1 mo)

2018-06-05—

(1 d)

2018-06-05—

(1 d)

2018-06-05—

(30’)

注:   数据参见http://satellite.nsmc.org.cn/portalsite/default.aspx[2020-06-08]。

icon 下载:  导出CSV icon 下载:  下载表格图片

与此同时,诸多的地面参数遥感反演研究也围绕风云二号卫星展开,比如基于分裂窗算法和地表温度日周期变化反演多时相地表温度(

张霄羽和王娇,2013),利用表观反照率和大气辐射传输模拟结果计算地表短波净辐射(王亚维 等,2016),利用土壤水分和地表温度和短波辐射数据的线性关系估算地表土壤水分(张霄羽和王娇,2012)以及综合利用风云二号静止卫星和低轨道卫星数据结合气象观测资料估算陆面ET(舒云巧 等,2011刘蓉 等,2012)等。

6 讨 论

本节针对静止气象卫星的数据处理、参数反演方法、卫星产品验证和应用等方向进行探讨,分析当前存在的问题和不足,探索未来的发展方向,为进一步提升卫星参数反演与应用服务。

6.1 数据处理与产品生产

因为静止卫星的高时频和准实时特征,获取的地面数据无疑是海量的,这对数据的存储、处理和服务都提出了新的挑战。总体而言,利用地球静止卫星反演地表参数的方法以实用为主,以满足高时频连续观测和实时产品生产的需求。从产品方面来看,各卫星均开发了一系列地表参数产品,支持近实时应用,但也存在产品空间分辨率低、全球覆盖不足的缺点。同时各卫星数据产品开发进度不一,比如SEVIRI起步较早,业务化水平高,数据产品较为全面,特别是独具特色的长时期TCDR产品。GOES-R和FY-4A紧随其后,也发布了一些初级产品,但产品质量还没有得到充分的检验,而葵花卫星的产品还处在研究阶段。

目前,需要进一步突破静止气象卫星跨平台数据快速汇聚、处理与反演方面的关键技术,提升海量数据的快速汇集、处理和在线服务功能。一些研究性的工作可以借鉴原先比较成熟的MODIS和Landsat系列产品的算法(Ganguly 等,2017;

Proud 等,2014),或者在先前算法上持续开发(Carrer 等,2019He 等,2019)。与此同时,为了克服现有方法的局限,必须进一步探索新的地表参数估算方法,如利用辐射传输物理模型和各种机器学习反演方法,提高参数反演精度(Carrer 等,2019)。在许多地表参数反演过程中,常常需要用到大气辅助数据,如GOES地表温度反演算法(Yu 等,2009)。因此,有必要同时提高各种大气辅助数据和模型模拟数据的精度,以利于地表参数的估算。

6.2 多星联合反演与应用

由于单颗静止气象卫星的时空覆盖范围有限,必须联合运用多颗静止气象卫星的综合优势,获取长时期连续覆盖数据,以满足地表环境变化监测的需求。比如EUMETSAT对所有第一和第二代Meteosat数据的整合分析生成的TCDR产品(表3)。美国NOAA公开了自1979年以来的所有GOES L1B数据(https://www.class.noaa.gov[2020-06-08]),中国的FY-2和FY-4系列卫星也积累了自2005年以来的完整观测,二者均可可用于生产长时期连续的地表产品。

与此同时,为了获取全球覆盖图像,必须综合运用全球的静止气象卫星观测(

Xie 等,2020)。Govaerts等(2008)首次从欧盟、美国和日本五颗静止气象卫星数据估算了地表反照率,所得结果与MODIS地表反照率平均误差在10%以内。随后,Lattanzio等(2013)又尝试从欧美日大约30颗不同静止卫星传感器中生成了自80年代初以来连续的地表反照率CDR产品。

多星联合反演与应用中,必须首先对不同卫星进行几何和辐射定标,以消除不同卫星传感器的几何和辐射差异。最近,研究人员对GOES和葵花卫星数据进行了定标处理,生成了高质量的TOA反射率和亮温产品,该数据集将为后续地表参数的生产提供极大的便利(

Wang 等,2020)。

6.3 静止与极轨卫星联合反演与应用

由于静止卫星的观测几何问题,在高纬度地区的图像变形较大,成像效果不佳,而极轨卫星能弥补高纬度地区的观测。同时静轨与极轨卫星的结合,能弥补极轨卫星在观测时相上的局限,特别是云覆盖对地表信息提取造成的障碍。为了综合发挥静止与极轨卫星的优势,许多研究人员利用二者进行综合反演地表参数。相关的融合方法大致可以分为两类,第一类直接从静止与极轨卫星数据联合反演地表参数,如

Zhang等(2014)改进了查找表方法,从MODIS、SEVIRI、MTSAT-1R和GOES反演短波入射辐射和PAR。Sun等(2012)从MODIS和SEVIRI估算逐日ET。另一类方法主要依靠静止卫星反演地表参数,而极轨卫星只提供辅助信息(Li 等,2015)。比如杨俊涛等(2013)利用静止卫星GOES和被动微波AMSR-E数据进行美国东部地区雪盖监测,新的融合方法比仅用GOES能获取更多地表信息。总体来看,综合利用静止与极轨卫星的研究,较多集中在小区域或流域尺度探索,而在国家和洲际尺度的研究工作相对欠缺,目前尚未报告有全球性的融合产品。

6.4 静止卫星产品的验证

与其他卫星产品的地面验证方式类似,静止卫星产品的验证也主要通过与用地面同步测量数据、极轨卫星数据或者模型模拟数据对比分析(

Fang等,2019a)。静止气象卫星产品的空间分辨率通常比极轨卫星数据空间分辨率低,尤其是全圆盘数据。因此,低空间分辨率静止气象卫星产品的验证对验证区域地表均一性提出了更高的要求。由于静止卫星的高时频特征,需要有同步的实时地表参数观测数据。对于一些辐射类产品,比如太阳辐射(Urraca 等,2017)和PAR (Janjai 和 Wattan,2011)等,目前都有地面的自动观测装置,为静止卫星产品的验证提供了极大的便利。而对部分植被参数,如植被指数和LAI等,目前还没有系统性的自动观测设施,这对地面验证工作提出了极大的挑战。未来的研究需要增强地表参数的自动观测能力,增进对静止卫星产品质量的准实时评估。

6.5 高空间分辨率静止卫星及应用

尽管静止气象卫星数据已经在多种环境和灾害监测中得到了应用,但是数据的空间分辨率还是比较低,主流的空间分辨率都在千米级。这一空间分辨率对于全球性应用还可以,区域性的应用则需要百米级甚至十米级的静止卫星数据。

除了静止气象卫星系列,高分四号(GF-4)是中国的另一颗令人瞩目的静止卫星。GF-4于2015-12-29成功发射,定点位置105.6°E,搭载的凝视相机空间分辨率分别为50 m(可见光—近红外)和400 m(中红外)(http://www.cresda.com/CN/Satellite/9855.shtml[2020-06-08])。因GF-4具备高时间分辨率和较高空间分辨率的优势,对地表共性参数的提取以及应对突发灾害具有重要意义,受到很多的关注(http://gaofenplatform.com/channels/8.html[2020-06-08])。但由于GF-4的空间覆盖范围限制,目前地表参数的生产和应用都还处于初级阶段,仅有少量报导进行了参数估算应用,如地表反照率估算(

孙越君 等,2018)、水体分类与提取(Ren和Liu,2019张伟 等,2018)以及干旱监测等(聂娟 等,2018)。这些研究提供了高分辨率静止卫星应用的部分范例,如何获取大范围连续的高分辨率观测则是值得进一步探索的问题。

7 结 语

过去20余年,伴随着静止气象卫星在气象业务上的应用,利用静止气象卫星获取地表参数也得到了很大的发展,这些参数在地表碳、能量和水循环研究以及地表资源环境动态监测中发挥了极其重要的作用。本文对目前业务运行的静止卫星和地表参数反演算法进行了系统分析和总结,并对当前和未来的发展方向进行了探讨。

总体来看,欧盟的MSG SEVIRI提供了完整系列的地表参数和气候数据记录数据,参数反演方法清晰实用。美国利用GOES-R系列卫星推出了几套高质量重点产品,后续的植被和反照率等产品也在逐步生产中。日本的葵花系列卫星虽未推出官方业务产品,但该卫星获得了中国研究人员的广泛青睐,被用来生成了多种陆表参数产品。中国的风云静止气象卫星也生产了系列地表参数产品,后续开放获取、地面验证和算法文档也在逐步推进。利用中国的GF-4静止卫星也在局地研究中做出了许多有特色的工作。

为了充分发挥静止气象卫星的优势,需要进一步探索新的数据处理方法,提高算法精度和效率,同时充分利用各种平台和高低轨道卫星数据,生成高质量的长时序地表参数产品,以满足地表过程研究和资源环境动态监测的需求。

致谢

致谢:撰写过程中博士生张英慧同学提出了部分修改意见并帮助整理了初稿,国家卫星气象中心的李贵才研究员参与了交流并提供了部分FY-4A资料,在此一并致谢。

参考文献(References)

Amraoui M, DaCamara C C and Pereira J M C. 2010. Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery. Remote Sensing of Environment, 114(5): 1038-1052 [DOI: 10.1016/j.rse.2009.12.019] [百度学术] 

Anderson M C, Allen R G, Morse A and Kustas W P. 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122: 50-65 [DOI: 10.1016/j.rse.2011.08.025] [百度学术] 

Beale C, Norouzi H, Sharifnezhadazizi Z, Bah A R, Yu P, Yu Y Y, Blake R, Vaculik A and Gonzalez-Cruz J. 2020. Comparison of diurnal variation of land surface temperature from GOES-16 ABI and MODIS instruments. IEEE Geoscience and Remote Sensing Letters, 17(4): 572-576 [DOI: 10.1109/LGRS.2019.2930174] [百度学术] 

Carlson T N, Rose F G and Perry E M. 1984. Regional-scale estimates of surface moisture availability from GOES infrared satellite measurements. Agronomy Journal, 76(6): 972-979 [DOI: 10.2134/agronj1984.00021962007600060025x] [百度学术] 

Carrer D, Ceamanos X, Moparthy S, Vincent C, Freitas S C and Trigo I F. 2019. Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (Part 1: Methodology). Remote Sensing, 11(21): 2532 [DOI: 10.3390/rs11212532] [百度学术] 

Cess R D and Vulis I L. 1989. Inferring surface solar absorption from broadband satellite measurements. Journal of Climate, 2(9): 974-985 [DOI: 10.1175/1520-0442(1989)002<0974:issafb>2.0.co;2] [百度学术] 

Charlock T P and Alberta T L. 1996. The CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data. Bulletin of the American Meteorological Society, 77(11): 2673-2683 [DOI: 10.1175/1520-0477(1996)077<2673:tceftr> 2.0.co;2] [百度学术] 

Chen E and Allen L H. 1987. Comparison of HCMM and GOES satellite temperatures and evaluation of surface statistics. Remote Sensing of Environment, 21(3): 341-353 [DOI: 10.1016/0034-4257(87)90017-4] [百度学术] 

Chen J, Zheng W and Liu C. 2017. Application of grassland fire monitoring based on Himawari-8 geostationary meteorological satellite data. Journal of Natural Disasters, 26(4): 197-204 [百度学术] 

陈洁, 郑伟, 刘诚. 2017. Himawari-8静止气象卫星草原火监测分析. 自然灾害学报, 26(4): 197-204 [DOI: 10.13577/j.jnd.2017.0423] [百度学术] 

Chen J M, Menges C H and Leblanc S G. 2005. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sensing of Environment, 97(4): 447-457[DOI: 10.1016/j.rse.2005.05.003] [百度学术] 

Chen Y P, Sun K M, Chen C, Bai T, Park T, Wang W L, Nemani R R and Myneni R B. 2019. Generation and evaluation of LAI and FPAR products from Himawari-8 advanced himawari imager (AHI) data. Remote Sensing, 11(13): 1517 [DOI: 10.3390/rs111 31517] [百度学术] 

Choi Y Y and Suh M S. 2018. Development of Himawari-8/advanced himawari imager (AHI) land surface temperature retrieval algorithm. Remote Sensing, 10(12): 2013 [DOI: 10.3390/rs10122013] [百度学术] 

de Bruin H A R, Trigo I F, Bosveld F C and Meirink J F. 2016. A thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO reference, suitable for remote sensing application. Journal of Hydrometeorology, 17(5): 1373-1382 [DOI: 10.1175/jhm-d-15-0006.1] [百度学术] 

Dedieu G, Deschamps P Y and Kerr Y H. 1987. Satellite estimation of solar irradiance at the surface of the earth and of surface albedo using a physical model applied to Metcosat data. Journal of Climate and Applied Meteorology, 26(1): 79-87 [DOI: 10.1175/1520-0450(1987)026<0079:seosia>2.0.co;2] [百度学术] 

Duguay-Tetzlaff A, Bento V A, Göttsche F M, Stöckli R, Martins J P A, Trigo I, Olesen F, Bojanowski J S, Da Camara C and Kunz H. 2015. Meteosat land surface temperature climate data record: achievable accuracy and potential uncertainties. Remote Sensing, 7(10): 13139-13156 [DOI: 10.3390/rs71013139] [百度学术] 

Fang H L, Baret F, Plummer S and Schaepman-Strub G. 2019a. An overview of global leaf area index (LAI): methods, products, validation, and applications. Reviews of Geophysics, 57(3): 739-799 [DOI: 10.1029/2018RG000608] [百度学术] 

Fang L, Zhan X W, Schull M, Kalluri S, Laszlo I, Yu P, Carter C, Hain C and Anderson M. 2019b. Evapotranspiration data product from NESDIS GET-D system upgraded for GOES-16 ABI observations. Remote Sensing, 11(22): 2639 [DOI: 10.3390/rs11222639] [百度学术] 

Fensholt R, Huber S, Proud S R and Mbow C. 2010. Detecting canopy water status using shortwave infrared reflectance data from polar orbiting and geostationary platforms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 271-285 [DOI: 10.1109/jstars.2010.2048744] [百度学术] 

Frulla L A, Gagliardini D A, Gallegos H G, Lopardo R and Tarpley J D. 1988. Incident solar radiation on Argentina from the geostationary satellite GOES: comparison with ground measurements. Solar Energy, 41(1): 61-69 [DOI: 10.1016/0038-092X(88)90116-8] [百度学术] 

García-Haro F J, Camacho F, Martínez B, Campos-Taberner M, Fuster B, Sánchez-Zapero J and Gilabert M A. 2019. Climate data records of vegetation variables from geostationary SEVIRI/MSG data: products, algorithms and applications. Remote Sensing, 11(18): 2103 [DOI: 10.3390/rs11182103] [百度学术] 

García-Haro F J, Sommer S and Kemper T. 2005. A new tool for variable multiple endmember spectral mixture analysis (VMESMA). International Journal of Remote Sensing, 26(10): 2135-2162 [DOI: 10.1080/01431160512331337817] [百度学术] 

Gautier C, Diak G and Masse S. 1980. A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. Journal of Applied Meteorology, 19(8): 1005-1012 [DOI: 10.1175/1520-0450(1980)019<1005:aspmte>2.0.co;2] [百度学术] 

Geiger B, Carrer D, Franchisteguy L, Roujean J L and Meurey C. 2008a. Land surface albedo derived on a daily basis from meteosat second generation observations. IEEE Transactions on Geoscience and Remote Sensing, 46(11): 3841-3856 [DOI: 10.1109/tgrs.2008.2001798] [百度学术] 

Geiger B, Meurey C, Lajas D, Franchistéguy L, Carrer D and Roujean J L. 2008b. Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteorological Applications, 15(3): 411-420 [DOI: 10.1002/met.84] [百度学术] 

Ghilain N, Arboleda A, Sepulcre-Cantò G, Batelaan O, Ardö J and Gellens-Meulenberghs F. 2012. Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite. Hydrology and Earth System Sciences, 16(8): 2567-2583 [DOI: 10.5194/hess-16-2567-2012] [百度学术] 

Govaerts Y and Lattanzio A. 2008. Estimation of surface albedo increase during the eighties Sahel drought from Meteosat observations. Global and Planetary Change, 64(3/4): 139-145 [DOI: 10.1016/j.gloplacha.2008.04.004] [百度学术] 

Govaerts Y M, Lattanzio A, Taberner M and Pinty B. 2008. Generating global surface albedo products from multiple geostationary satellites. Remote Sensing of Environment, 112(6): 2804-2816 [DOI: 10.1016/j.rse.2008.01.012] [百度学术] 

Guan K, Medvigy D, Wood E F, Caylor K K, Li S and Jeong S J. 2014. Deriving vegetation phenological time and trajectory information over Africa using SEVIRI daily LAI. IEEE Transactions on Geoscience and Remote Sensing, 52(2): 1113-1130 [DOI: 10.1109/tgrs.2013.2247611] [百度学术] 

He T, Zhang Y, Liang S L, Yu Y Y and Wang D D. 2019. Developing land surface directional reflectance and albedo products from geostationary GOES-R and Himawari data: theoretical basis, operational implementation, and validation. Remote Sensing, 11(22): 2655 [DOI:10.3390/rs11222655] [百度学术] 

Hou N, Zhang X T, Zhang W Y, Wei Y, Jia K, Yao Y J, Jiang B and Cheng J. 2020. Estimation of surface downward shortwave radiation over China from Himawari-8 AHI data based on random forest. Remote Sensing, 12(1): 181 [DOI: 10.3390/rs12010181] [百度学术] 

Jang E, Kang Y, Im J, Lee D W, Yoon J and Kim S K. 2019. Detection and monitoring of forest fires using Himawari-8 geostationary satellite data in South Korea. Remote Sensing, 11(3): 271 [DOI: 10.3390/rs11030271] [百度学术] 

Janjai S and Wattan R. 2011. Development of a model for the estimation of photosynthetically active radiation from geostationary satellite data in a tropical environment. Remote Sensing of Environment, 115(7): 1680-1693 [DOI: 10.1016/j.rse.2011.02.026] [百度学术] 

Jiang G M, Li Z L and Nerry F. 2006. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI. Remote Sensing of Environment, 105(4): 326-340 [DOI: 10.1016/j.rse.2006.07.015] [百度学术] 

Lattanzio A, Schulz J, Matthews J, Okuyama A, Theodore B, Bates J J, Knapp K R, Kosaka Y and Schüller L. 2013. Land surface albedo from geostationary satelites: a multiagency collaboration within SCOPE-CM. Bulletin of the American Meteorological Society, 94(2): 205-214 [DOI: 10.1175/bams-d-11-00230.1] [百度学术] 

Li L, Xin X Z, Zhang H L, Yu J F, Liu Q H, Yu S S and Wen J G. 2015. A method for estimating hourly photosynthetically active radiation (PAR) in China by combining geostationary and polar-orbiting satellite data. Remote Sensing of Environment, 165: 14-26 [DOI: 10.1016/j.rse.2015.03.034] [百度学术] 

Li S, Wang W L, Hashimoto H, Xiong J, Vandal T, Yao J, Qian L X, Ichii K, Lyapustin A, Wang Y J and Nemani R. 2019. First provisional land surface reflectance product from geostationary satellite Himawari-8 AHI. Remote Sensing, 11(24): 2990 [DOI: 10.3390/rs11242990] [百度学术] 

Li X W. 2006. Remote sensing science and quantitative remote sensing. Science Focus, 1(5): 45 [百度学术] 

李小文. 2006. 遥感科学与定量遥感. 科学观察, 1(5): 45-45 [百度学术] 

Li Y N, Yu W J, Xie T and Zhou H J. 2019. Drought disaster monitoring and drought analysis based on FY-4 AGRI and Himawari-8 AHI——a case study of the autumn drought in Hebei province in 2018. Journal of Catastrophology, 34(4): 228-234 [百度学术] 

李亚男, 于文金, 谢涛, 周鸿渐. 2019. 基于FY-4 AGRI与Himawari-8 AHI的干旱灾害监测及旱情分析——以2018年河北省秋季干旱为例. 灾害学, 34(4): 228-234 [DOI: 10.3969/j.issn.1000-811X.2019.04.039] [百度学术] 

Liu R, Wen J, Wang X, Tian H and Zhang Y. 2012. Estimation of evapotranspiration over the Yellow River's source area from national geostationary meteorological satellite data. Advances in Water Science, 23(5): 609-615 [百度学术] 

刘蓉, 文军, 王欣, 田辉, 张宇. 2012. 利用中国静止气象卫星资料估算黄河源区蒸散发量. 水科学进展, 23(5): 609-615 [DOI: 10.14042/j.cnki.32.1309.2012.05.002] [百度学术] 

Liu X Z, He B B, Quan X W, Yebra M, Qiu S, Yin C M, Liao Z M and Zhang H G. 2018. Near real-time extracting wildfire spread rate from Himawari-8 satellite data. Remote Sensing, 10(10): 1654 [DOI: 10.3390/rs10101654] [百度学术] 

Loew A and Govaerts Y. 2010. Towards multidecadal consistent meteosat surface albedo time series. Remote Sensing, 2(4): 957-967 [DOI: 10.3390/rs2040957] [百度学术] 

Lu F, Zhang X H, Chen B Y, Liu H, Wu R H, Han Q, Feng X H, Li Y and Zhang Z Q. 2017. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects. Journal of Marine Meteorology, 37(2): 1-12 [百度学术] 

陆风, 张晓虎, 陈博洋, 刘辉, 吴荣华, 韩琦, 冯小虎, 李云, 张志清. 2017. 风云四号气象卫星成像特性及其应用前景. 海洋气象学报, 37(2): 1-12 [DOI: 10.19513/j.cnki.issn2096-3599.2017.02.001] [百度学术] 

Ma R, Husi L T, Shang H Z, A’na R, He J, Han X and Wang Z M. 2019. Estimation of downward surface shortwave radiation from Himawari-8 atmospheric products. Journal of Remote Sensing, 23(5): 924-934 [百度学术] 

马润, 胡斯勒图, 尚华哲, 阿娜日, 赫杰, 韩旭, 王子明. 2019. 基于葵花-8卫星大气产品的地表下行短波辐射计算. 遥感学报, 23(5): 924-934 [DOI: 10.11834/jrs.20198033] [百度学术] 

Ma X L, Huete A, Tran N N, Bi J, Gao S C and Zeng Y L. 2020. Sun-angle effects on remote-sensing phenology observed and modelled using Himawari-8. Remote Sensing, 12(8): 1339 [DOI: 10.3390/rs12081339] [百度学术] 

Martínez B, Sanchez-Ruiz S, Gilabert M A, Moreno A, Campos-Taberner M, García-Haro F J, Trigo I F, Aurela M, Brümmer C, Carrar A, De Ligne A, Gianelle D, Grünwald T, Limousin J M, Lohila A, Mammarella I, Sottocornola M, Steinbrecher R and Tagesson T. 2018. Retrieval of daily gross primary production over Europe and Africa from an ensemble of SEVIRI/MSG products. International Journal of Applied Earth Observation and Geoinformation, 65: 124-136 [DOI: 10.1016/j.jag.2017.10.011] [百度学术] 

Miura T, Nagai S, Takeuchi M, Ichii K and Yoshioka H. 2019. Improved characterisation of vegetation and land surface seasonal dynamics in Central Japan with Himawari-8 hypertemporal data. Scientific Reports, 9(1): 15692 [DOI: 10.1038/s41598-019-52076-x] [百度学术] 

Monteith J L. 1972. Solar radiation and productivity in tropical ecosystems. The Journal of Applied Ecology, 9(3): 747-766 [DOI: 10.2307/2401901] [百度学术] 

Nie J, Deng L, Hao X L, Liu M and He Y. 2018. Application of GF-4 satellite in drought remote sensing monitoring: a case study of Southeastern Inner Mongolia. Journal of Remote Sensing, 22(3): 400-407 [百度学术] 

聂娟, 邓磊, 郝向磊, 刘明, 贺英. 2018. 高分四号卫星在干旱遥感监测中的应用. 遥感学报, 22(3): 400-407 [DOI: 10.11834/jrs.20187067] [百度学术] 

Painter T H, Rittger K, McKenzie C, Slaughter P, Davis R E and Dozier J. 2009. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sensing of Environment, 113(4): 868-879 [DOI: 10.1016/j.rse.2009.01.001] [百度学术] 

Pinker R T and Laszlo I. 1992. Modeling surface solar irradiance for satellite applications on a global scale. Journal of Applied Meteorology, 31(2): 194-211 [DOI: 10.1175/1520-0450(1992)031 <0194:mssifs>2.0.co;2] [百度学术] 

Pinty B, Szejwach G and Stum J. 1985. Surface albedo over the sahel from METEOSAT radiances. Journal of Climate and Applied Meteorology, 24(2): 108-113 [DOI: 10.1175/1520-0450(1985)024 <0108:saotsf>2.0.co;2] [百度学术] 

Prata A J. 1996. A new long-wave formula for estimating downward clear-sky radiation at the surface. Quarterly Journal of the Royal Meteorological Society, 122(533): 1127-1151 [DOI: 10.1002/qj.49712253306] [百度学术] 

Prins E M and Menzel W P. 1994. Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991. Journal of Geophysical Research: Atmospheres, 99(D8): 16719-16735 [DOI: 10.1029/94jd01208] [百度学术] 

Proud S R, Zhang Q L, Schaaf C, Fensholt R, Rasmussen M O, Shisanya C, Mutero W, Mbow C, Anyamba A, Pak E and Sandholt I. 2014. The normalization of surface anisotropy effects present in SEVIRI reflectances by using the MODIS BRDF method. IEEE Transactions on Geoscience and Remote Sensing, 52(10): 6026-6039 [DOI: 10.1109/TGRS.2013.2294602] [百度学术] 

Rahman H and Dedieu G. 1994. SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. International Journal of Remote Sensing, 15(1): 123-143 [DOI: 10.1080/01431169408954055] [百度学术] 

Ren Y H and Liu Y L. 2019. Surface water classification from GF-4 images using a time series water index. International Journal of Remote Sensing, 40(16): 6336-6364 [DOI: 10.1080/01431161.2019.1590879] [百度学术] 

Rosema A and Fiselier J L. 1990. Meteosat-based evapotranspiration and thermal inertia mapping for monitoring transgression in the Lake Chad region and Niger Delta. International Journal of Remote Sensing, 11(5): 741-752 [DOI: 10.1080/01431169008955054] [百度学术] 

Roujean J L and Bréon F M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3): 375-384 [DOI: 10.1016/0034-4257(94)00114-3] [百度学术] 

Roujean J L and Lacaze R. 2002. Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: a pragmatic method and its validation. Journal of Geophysical Research, 107(D12): ACL 6-1-ACL 6-14 [DOI: 10.1029/2001JD000751] [百度学术] 

Roujean J L, Leroy M and Deschamps P Y. 1992. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data. Journal of Geophysical Research, 97(D18): 20455-20468 [DOI: 10.1029/92JD01411] [百度学术] 

Schiller K. 2006. Derivation of photosynthetically available radiation from METEOSAT data in the German Bight with neural nets. Ocean Dynamics, 56(2): 79-85 [DOI: 10.1007/s10236-006-0058-1] [百度学术] 

Shu Y Q, Li H J and Lei Y P. 2011. Estimation of regional evapotranspiration over the Hebei Plain using geostationary satellite data. Chinese Journal of Eco-Agriculture, 19(5): 1151-1156 [百度学术] 

舒云巧, 李红军, 雷玉平. 2011. 基于静止气象卫星的河北平原实际蒸散量遥感估算. 中国生态农业学报, 19(5): 1151-1156 [DOI: 10.3724/SP.J.1011.2011.01151] [百度学术] 

Siljamo N and Hyvärinen O. 2011. New geostationary satellite-based snow-cover algorithm. Journal of Applied Meteorology and Climatology, 50(6): 1275-1290 [DOI: 10.1175/2010jamc2568.1] [百度学术] 

Sun Y J, Wang Z H, Qin Q M, Han G H, Ren H Z and Huang J F. 2018. Retrieval of surface albedo based on GF-4 geostationary satellite image data. Journal of Remote Sensing, 22(2): 220-233 [百度学术] 

孙越君, 汪子豪, 秦其明, 韩谷怀, 任华忠, 黄敬峰. 2018. 高分四号静止卫星数据的地表反照率反演. 遥感学报, 22(2): 220-233 [DOI: 10.11834/jrs.20186428] [百度学术] 

Sun Z G, Gebremichael M, Ardö J, Nickless A, Caquet B, Merboldh L and Kutschi W. 2012. Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data. Atmospheric Research, 112: 35-44 [DOI: 10.1016/j.atmosres.2012.04.005] [百度学术] 

Ulivieri C, Castronuovo M M, Francioni R and Cardillo A. 1994. A split window algorithm for estimating land surface temperature from satellites. Advances in Space Research, 14(3): 59-65 [DOI: 10.1016/0273-1177(94)90193-7] [百度学术] 

Urraca R, Gracia-Amillo A M, Koubli E, Huld T, Trentmann J, Riihelä A, Lindfors A V, Palmer D, Gottschalg R and Antonanzas-Torres F. 2017. Extensive validation of CM SAF surface radiation products over Europe. Remote Sensing of Environment, 199: 171-186 [DOI: 10.1016/j.rse.2017.07.013] [百度学术] 

van Wagner C E. 1987. Development and structure of the Canadian forest fire weather index system. Ottawa, Ontario: Canadian Forestry Service [百度学术] 

Verhoef A, Ottlé C, Cappelaere B, Murray T, Saux-Picart S, Zribi M, Maignan F, Boulain N, Demarty J and Ramier D. 2012. Spatio-temporal surface soil heat flux estimates from satellite data; results for the AMMA experiment at the Fakara (Niger) supersite. Agricultural and Forest Meteorology, 154-155: 55-66 [DOI: 10.1016/j.agrformet.2011.08.003] [百度学术] 

Verhoef W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 16(2): 125-141 [DOI: 10.1016/0034-4257(84)90 057-9] [百度学术] 

Wan Z M and Dozier J. 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905 [DOI: 10.1109/36.508406] [百度学术] 

Wang G X, Jiang L M, Shi J C, Liu X J, Yang J W and Cui H Z. 2019. Snow-covered area retrieval from Himawari-8 AHI imagery of the Tibetan Plateau. Remote Sensing, 11(20): 2391 [DOI: 10.3390/rs11202391] [百度学术] 

Wang W L, Li S, Hashimoto H, Takenaka H, Higuchi A, Kalluri S and Nemani R. 2020. An introduction to the geostationary-NASA earth exchange (GeoNEX) products: 1. Top-of-atmosphere reflectance and brightness temperature. Remote Sensing, 12(8): 1267 [DOI: 10.3390/rs12081267] [百度学术] 

Wang Y W, Song X N and Wang R X. 2016. Estimation of net surface shortwave radiation using FengYun-2E (FY-2E) data on cloud-free days. Journal of University of Chinese Academy of Sciences, 33(6): 769-774 [百度学术] 

王亚维, 宋小宁, 王睿馨. 2016. 晴天条件下基于FY-2E数据的地表短波净辐射的反演方法. 中国科学院大学学报, 33(6): 769-774 [百度学术] 

Wickramasinghe C H, Jones S, Reinke K and Wallace L. 2016. Development of a multi-spatial resolution approach to the surveillance of active fire lines using Himawari-8. Remote Sensing, 8(11): 932 [DOI: 10.3390/rs8110932] [百度学术] 

Wickramasinghe C, Wallace L, Reinke K and Jones S. 2020. Intercomparison of Himawari-8 AHI-FSA with MODIS and VIIRS active fire products. International Journal of Digital Earth, 13(4): 457-473 [DOI: 10.1080/17538947.2018.1527402] [百度学术] 

Wooster M J, Zhukov B and Oertel D. 2003. Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 86(1): 83-107 [DOI: 10.1016/s0034-4257(03)00070-1] [百度学术] 

Wu X. 2014. Retrieval model for estimating clear-sky downward longwave radiation at the surface from the FY-4 geostationary satellite. Climatic and Environmental Research, 19(3): 362-370 [百度学术] 

吴晓. 2014. 从FY-4静止气象卫星估算晴空地表下行长波辐射通量的反演模式. 气候与环境研究, 19(3): 362-370 [DOI: 10.3878/j.issn.1006-9585.2013.13032] [百度学术] 

Wu X, Min M and Dong L X. 2018. Estimation and diurnal variation analysis of clear-sky surface longwave radiation fluxes from Himawari08 satellite. Climatic and Environmental Research, 23(1): 37-46 [百度学术] 

吴晓, 闵敏, 董立新. 2018. 从Himawari08卫星估算晴空地表长波辐射及其日变化特征初探. 气候与环境研究, 23(1): 37-46 [DOI: 10.3878/j.issn.1006-9585.2017.16152] [百度学术] 

Xie Y Q, Xue Y, Guang J, Mei L L, She L, Li Y, Che Y H and Fan C. 2020. Deriving a global and hourly data set of aerosol optical depth over land using data from four geostationary satellites: GOES-16, MSG-1, MSG-4, and Himawari-8. IEEE Transactions on Geoscience and Remote Sensing, 58(3): 1538-1549 [DOI: 10.1109/TGRS.2019.2944949] [百度学术] 

Xie Z X, Song W G, Ba R, Li X L and Xia L. 2018. A spatiotemporal contextual model for forest fire detection using Himawari-8 satellite data. Remote Sensing, 10(12): 1992 [DOI: 10.3390/rs10121992] [百度学术] 

Xu W D, Wooster M J, Kaneko T, He J P, Zhang T R and Fisher D. 2017. Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI. Remote Sensing of Environment, 193: 138-149 [DOI: 10.1016/j.rse.2017.02.024] [百度学术] 

Yan D, Zhang X Y, Yu Y Y and Guo W. 2016. A comparison of tropical rainforest phenology retrieved from geostationary (SEVIRI) and polar-orbiting (MODIS) sensors across the Congo Basin. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4867-4881 [DOI: 10.1109/TGRS.2016.2552462] [百度学术] 

Yan D, Zhang X Y, Nagai S, Yu Y Y, Akitsu T, Nasahara K N, Ide R and Maeda T. 2019. Evaluating land surface phenology from the Advanced Himawari Imager using observations from MODIS and the Phenological Eyes Network. International Journal of Applied Earth Observation and Geoinformation, 79: 71-83 [DOI: 10.1016/j.jag.2019.02.011] [百度学术] 

Yang J, Zhang Z Q, Wei C Y, Lu F and Guo Q. 2017. Introducing the new generation of chinese geostationary weather satellites, Fengyun-4. Bulletin of the American Meteorological Society, 98(8): 1637-1658 [DOI: 10.1175/bams-d-16-0065.1] [百度学术] 

Yang J T, Jiang L M, Pan J M and Zhang L X. 2013. Study of monitoring snow cover using GOES geostationary satellite and AMSR-E. Remote Sensing Technology and Application, 28(5): 920-927 [百度学术] 

杨俊涛, 蒋玲梅, 潘金梅, 张立新. 2013. 基于GOES静止气象卫星和AMSR-E雪盖融合监测方法研究. 遥感技术与应用, 28(5): 920-927 [百度学术] 

Yang L W, Gao X Q, Li Z C, Jia D Y and Jiang J X. 2019. Nowcasting of surface solar irradiance using FengYun-4 satellite observations over China. Remote Sensing, 11(17): 1984 [DOI: 10.3390/rs11171984] [百度学术] 

Yu Y C, Shi J C, Wang T X, Letu H S, Yuan P F, Zhou W and Hu L. 2019. Evaluation of the Himawari-8 shortwave downward radiation (SWDR) product and its comparison with the CERES-SYN, MERRA-2, and ERA-interim datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(2): 519-532 [DOI: 10.1109/jstars.2018.2851965] [百度学术] 

Yu Y Y, Tarpley D, Privette J L, Goldberg M D, Raja M K R V, Vinnikov K Y and Xu H. 2009. Developing algorithm for operational GOES-R land surface temperature product. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 936-951 [DOI: 10.1109/tgrs.2008.2006180] [百度学术] 

Zhang H X, Xu H, Han D J, Zheng F J and Zhang W H. 2018. Dynamic dust detection method based on geostationary meteorological satellite. Remote Sensing Information, 33(1): 36-44 [百度学术] 

张海香, 徐辉, 韩道军, 郑逢杰, 张文豪. 2018. 基于静止气象卫星的动态沙尘检测方法. 遥感信息, 33(1): 36-44 [DOI: 10.3969/j.issn.1000-3177.2018.01.006] [百度学术] 

Zhang P, Zhu L, Tang S H, Gao L, Chen L, Zheng W, Han X Z, Chen J and Shao J L. 2019. General comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications. Frontiers in Earth Science, 6: 224 [DOI: 10.3389/feart.2018.00224] [百度学术] 

Zhang W, Zhao L J, Tang P and Zheng K. 2018. A new method for fast water extraction based on multi-temporal GF-4 remote sensing imagery. Remote Sensing Information, 33(4): 108-114 [百度学术] 

张伟, 赵理君, 唐娉, 郑柯. 2018. 一种利用多时相GF-4影像的快速水体提取方法. 遥感信息, 33(4): 108-114 [DOI: 10.3969/j.issn.1000-3177.2018.04.016] [百度学术] 

Zhang X T, Liang S L, Zhou G Q, Wu H R and Zhao X. 2014. Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sensing of Environment, 152: 318-332 [DOI: 10.1016/j.rse.2014.07.003] [百度学术] 

Zhang X Y and Wang J. 2012. Estimation of surface soil moisture from onboard FY-2D satellite multi-temporal data. Chinese Journal of Eco-Agriculture, 20(7): 882-887 [百度学术] 

张霄羽, 王娇. 2012. 风云二号静止气象卫星数据估算土壤表面水分方法研究. 中国生态农业学报, 20(7): 882-887 [DOI: 10.3724/SP.J.1011.2012.00882] [百度学术] 

Zhang X Y and Wang J. 2013. Estimation of land surface temperature using geostationary meteorological satellite data. Remote Sensing technology and Application, 28(1): 12-17 [百度学术] 

张霄羽, 王娇. 2013. 基于静止气象卫星数据的地表温度遥感估算. 遥感技术与应用, 28(1): 12-17 [百度学术] 

Zhao W H, Shan H B and Zhang Y W. 2019. Approach to the fire detection technology and the algorithm from the geostationary Himawari-8. Journal of Safety and Environment, 19(6): 2063-2073 [百度学术] 

赵文化, 单海滨, 张月维. 2019. 基于Himawari-8静止卫星森林火灾识别技术研究. 安全与环境学报, 19(6): 2063-2073 [DOI: 10.13637/j.issn.1009-6094.2019.06.027] [百度学术] 

Zheng T, Liang S and Wang K. 2008. Estimation of incident PAR from GOES imagery. Journal of Applied Meteorology and Climatology, 47(3): 853-868 [DOI: 10.1175/2007JAMC1475.1] [百度学术] 

文章被引用时,请邮件提醒。
提交

相关文章

暂无数据

相关作者

暂无数据

相关机构

暂无数据
0