基于地球静止气象卫星的地表参数遥感研究进展
Retrieval of land surface parameters from geostationary satellite data: An overview of recent developments
- 2021年25卷第1期 页码:109-125
纸质出版日期: 2021-01-07
DOI: 10.11834/jrs.20210194
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-01-07 ,
扫 描 看 全 文
方红亮.2021.基于地球静止气象卫星的地表参数遥感研究进展.遥感学报,25(1): 109-125
Fang H L. 2021 Retrieval of land surface parameters from geostationary satellite data: An overview of recent developments. National Remote Sensing Bulletin, 25(1):109-125
地表参数定量遥感反演是遥感科学研究的重要环节。21世纪以来,地球静止气象卫星数据在地表参数遥感反演中受到越来越多的重视。本文对利用地球静止气象卫星进行地表参数遥感反演研究的进展进行了综述。文章首先简单介绍了当前正在运行的欧盟Meteosat、美国GOES-R、日本葵花和中国风云静止卫星系统,随后详细总结了不同卫星系统估算各种地表参数的方法。在此基础上,文章对进一步利用静止卫星估算地表参数的研究展开讨论,指出未来的研究应重点关注几个方面:(1)探索和运用新技术提高静止卫星数据获取和处理的效率和精度;(2)融合全球多颗静止气象卫星,同时与极轨卫星融合,生产覆盖全球的长时序地表参数产品;(3)探索地表参数的高效获取方法,对静止气象卫星地表参数产品开展真实性检验,满足地表过程研究和资源环境动态监测对高质量地表参数产品的需求。
Since the beginning of this century
more and more attention has been given to using geostationary meteorological satellite data in the retrieval of land surface parameters. This paper gives an overview of the recent developments on the retrieval of land surface parameters from geostationary satellite data. Geostationary meteorological satellites have been developed in Europe (Meteosat)
United Sates (GOES-R)
Japan (Himawari)
and China (FY series). The geostationary satellite data volume is usually high because of the high temporal revisit frequency
which poses great challenges to data storage
parameter retrieval and product distribution. Nonetheless
each satellite program has developed a series of land surface products to support near real-time applications.
Various methods to estimate land surface parameters are described. The Meteosat SEVIRI is leading the development of land surface products
especially the unique long-term Thematic Climate Data Record (TCDR) products. The standard products include Land Surface Temperature (LST)
longwave and shortwave radiances
albedo
fraction vegetation cover
leaf area index
the fraction of absorbed photosynthetic active radiation
and gross primary production
evapotranspiration
latent and sensible heat flux
wild fire
and snow cover. Among the standard products
the LST
radiance
and albedo are also distributed in the TCDR products. GOES-R and FY-4A are also releasing similar preliminary products
but their quality still need to be fully validated. The Himawai-8 products are still in the research stage. Further physical retrieval methods and various machine learning inversion methods can be explored to improve the accuracy of parameter inversion. It is also necessary to improve the quality of auxiliary atmospheric field data and model simulations to facilitate the land surface parameter retrieval.
Multiple geostationary satellites can be integrated to provide long-term observations and global coverage. EUMETSAT has integrated all TCDR products generated from the first-and second-generation Meteosat data
and the National Oceanic and Atmospheric Administration (NOAA) has released all GOES level-1B data since 1979. These two dataset can be used to generate long-term continuous land surface products. GOES-R and Himawari-8 data have also been combined to generate high quality top-of-atmosphere reflectance and bright temperature products
which will greatly facilitate the generation of other land surface parameters. Geostationary satellite data can also be combined with the polar orbiting satellite data in land surface parameter retrieval; however
current studies are mostly carried out on small regional scales
whereas national and global studies are relatively deficient.
Land surface parameters retrieved from geostationary satellites can be validated through comparison with concurrent ground measurements
polar orbiting satellite products and model simulations. However
simultaneous real-time surface data are lacking. On the other hand
current geostationary meteorological satellite data are in the kilometric spatial resolution and are limited for high resolution applications. With its high temporal and spatial resolutions (50 m)
the GF-4 satellite launched by China provides a great potential for high resolution land surface monitoring and is worthy of further exploration.
Future researches using geostationary satellite data to estimate land surface parameters include: (1) exploration of new techniques to improve the efficiency and accuracy of geostationary satellite data acquisition and processing; (2) integration of multiple geostationary and polar-orbiting satellite data to produce long term global land surface parameters; (3) exploration of automatic field measurement methods to enhance the validation of land surface parameters derived from geostationary satellite data.
遥感静止气象卫星地表参数气候数据记录MSG SEVIRIGOES-R ABIHimawai-8 AHIFY-4A AGRI
geostationary meteorological satelliteland surface parametersClimate Data Record (CDR)MSG SEVIRIGOES-R ABIHimawai-8 AHIFY-4A AGRI
Amraoui M, DaCamara C C and Pereira J M C. 2010. Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery. Remote Sensing of Environment, 114(5): 1038-1052 [DOI: 10.1016/j.rse.2009.12.019http://dx.doi.org/10.1016/j.rse.2009.12.019]
Anderson M C, Allen R G, Morse A and Kustas W P. 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122: 50-65 [DOI: 10.1016/j.rse.2011.08.025http://dx.doi.org/10.1016/j.rse.2011.08.025]
Beale C, Norouzi H, Sharifnezhadazizi Z, Bah A R, Yu P, Yu Y Y, Blake R, Vaculik A and Gonzalez-Cruz J. 2020. Comparison of diurnal variation of land surface temperature from GOES-16 ABI and MODIS instruments. IEEE Geoscience and Remote Sensing Letters, 17(4): 572-576 [DOI: 10.1109/LGRS.2019.2930174http://dx.doi.org/10.1109/LGRS.2019.2930174]
Carlson T N, Rose F G and Perry E M. 1984. Regional-scale estimates of surface moisture availability from GOES infrared satellite measurements. Agronomy Journal, 76(6): 972-979 [DOI: 10.2134/agronj1984.00021962007600060025xhttp://dx.doi.org/10.2134/agronj1984.00021962007600060025x]
Carrer D, Ceamanos X, Moparthy S, Vincent C, Freitas S C and Trigo I F. 2019. Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (Part 1: Methodology). Remote Sensing, 11(21): 2532 [DOI: 10.3390/rs11212532http://dx.doi.org/10.3390/rs11212532]
Cess R D and Vulis I L. 1989. Inferring surface solar absorption from broadband satellite measurements. Journal of Climate, 2(9): 974-985 [DOI: 10.1175/1520-0442(1989)002<0974:issafb>2.0.co;2http://dx.doi.org/10.1175/1520-0442(1989)002<0974:issafb>2.0.co;2]
Charlock T P and Alberta T L. 1996. The CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data. Bulletin of the American Meteorological Society, 77(11): 2673-2683 [DOI: 10.1175/1520-0477(1996)077<2673:tceftr> 2.0.co;2http://dx.doi.org/10.1175/1520-0477(1996)077<2673:tceftr>2.0.co;2]
Chen E and Allen L H. 1987. Comparison of HCMM and GOES satellite temperatures and evaluation of surface statistics. Remote Sensing of Environment, 21(3): 341-353 [DOI: 10.1016/0034-4257(87)90017-4http://dx.doi.org/10.1016/0034-4257(87)90017-4]
Chen J, Zheng W and Liu C. 2017. Application of grassland fire monitoring based on Himawari-8 geostationary meteorological satellite data. Journal of Natural Disasters, 26(4): 197-204
陈洁, 郑伟, 刘诚. 2017. Himawari-8静止气象卫星草原火监测分析. 自然灾害学报, 26(4): 197-204 [DOI: 10.13577/j.jnd.2017.0423http://dx.doi.org/10.13577/j.jnd.2017.0423]
Chen J M, Menges C H and Leblanc S G. 2005. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sensing of Environment, 97(4): 447-457[DOI: 10.1016/j.rse.2005.05.003http://dx.doi.org/10.1016/j.rse.2005.05.003]
Chen Y P, Sun K M, Chen C, Bai T, Park T, Wang W L, Nemani R R and Myneni R B. 2019. Generation and evaluation of LAI and FPAR products from Himawari-8 advanced himawari imager (AHI) data. Remote Sensing, 11(13): 1517 [DOI: 10.3390/rs111 31517http://dx.doi.org/10.3390/rs11131517]
Choi Y Y and Suh M S. 2018. Development of Himawari-8/advanced himawari imager (AHI) land surface temperature retrieval algorithm. Remote Sensing, 10(12): 2013 [DOI: 10.3390/rs10122013http://dx.doi.org/10.3390/rs10122013]
de Bruin H A R, Trigo I F, Bosveld F C and Meirink J F. 2016. A thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO reference, suitable for remote sensing application. Journal of Hydrometeorology, 17(5): 1373-1382 [DOI: 10.1175/jhm-d-15-0006.1http://dx.doi.org/10.1175/jhm-d-15-0006.1]
Dedieu G, Deschamps P Y and Kerr Y H. 1987. Satellite estimation of solar irradiance at the surface of the earth and of surface albedo using a physical model applied to Metcosat data. Journal of Climate and Applied Meteorology, 26(1): 79-87 [DOI: 10.1175/1520-0450(1987)026<0079:seosia>2.0.co;2http://dx.doi.org/10.1175/1520-0450(1987)026<0079:seosia>2.0.co;2]
Duguay-Tetzlaff A, Bento V A, Göttsche F M, Stöckli R, Martins J P A, Trigo I, Olesen F, Bojanowski J S, Da Camara C and Kunz H. 2015. Meteosat land surface temperature climate data record: achievable accuracy and potential uncertainties. Remote Sensing, 7(10): 13139-13156 [DOI: 10.3390/rs71013139http://dx.doi.org/10.3390/rs71013139]
Fang H L, Baret F, Plummer S and Schaepman-Strub G. 2019a. An overview of global leaf area index (LAI): methods, products, validation, and applications. Reviews of Geophysics, 57(3): 739-799 [DOI: 10.1029/2018RG000608http://dx.doi.org/10.1029/2018RG000608]
Fang L, Zhan X W, Schull M, Kalluri S, Laszlo I, Yu P, Carter C, Hain C and Anderson M. 2019b. Evapotranspiration data product from NESDIS GET-D system upgraded for GOES-16 ABI observations. Remote Sensing, 11(22): 2639 [DOI: 10.3390/rs11222639http://dx.doi.org/10.3390/rs11222639]
Fensholt R, Huber S, Proud S R and Mbow C. 2010. Detecting canopy water status using shortwave infrared reflectance data from polar orbiting and geostationary platforms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 271-285 [DOI: 10.1109/jstars.2010.2048744http://dx.doi.org/10.1109/jstars.2010.2048744]
Frulla L A, Gagliardini D A, Gallegos H G, Lopardo R and Tarpley J D. 1988. Incident solar radiation on Argentina from the geostationary satellite GOES: comparison with ground measurements. Solar Energy, 41(1): 61-69 [DOI: 10.1016/0038-092X(88)90116-8http://dx.doi.org/10.1016/0038-092X(88)90116-8]
García-Haro F J, Camacho F, Martínez B, Campos-Taberner M, Fuster B, Sánchez-Zapero J and Gilabert M A. 2019. Climate data records of vegetation variables from geostationary SEVIRI/MSG data: products, algorithms and applications. Remote Sensing, 11(18): 2103 [DOI: 10.3390/rs11182103http://dx.doi.org/10.3390/rs11182103]
García-Haro F J, Sommer S and Kemper T. 2005. A new tool for variable multiple endmember spectral mixture analysis (VMESMA). International Journal of Remote Sensing, 26(10): 2135-2162 [DOI: 10.1080/01431160512331337817http://dx.doi.org/10.1080/01431160512331337817]
Gautier C, Diak G and Masse S. 1980. A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. Journal of Applied Meteorology, 19(8): 1005-1012 [DOI: 10.1175/1520-0450(1980)019<1005:aspmte>2.0.co;2http://dx.doi.org/10.1175/1520-0450(1980)019<1005:aspmte>2.0.co;2]
Geiger B, Carrer D, Franchisteguy L, Roujean J L and Meurey C. 2008a. Land surface albedo derived on a daily basis from meteosat second generation observations. IEEE Transactions on Geoscience and Remote Sensing, 46(11): 3841-3856 [DOI: 10.1109/tgrs.2008.2001798http://dx.doi.org/10.1109/tgrs.2008.2001798]
Geiger B, Meurey C, Lajas D, Franchistéguy L, Carrer D and Roujean J L. 2008b. Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteorological Applications, 15(3): 411-420 [DOI: 10.1002/met.84http://dx.doi.org/10.1002/met.84]
Ghilain N, Arboleda A, Sepulcre-Cantò G, Batelaan O, Ardö J and Gellens-Meulenberghs F. 2012. Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite. Hydrology and Earth System Sciences, 16(8): 2567-2583 [DOI: 10.5194/hess-16-2567-2012http://dx.doi.org/10.5194/hess-16-2567-2012]
Govaerts Y and Lattanzio A. 2008. Estimation of surface albedo increase during the eighties Sahel drought from Meteosat observations. Global and Planetary Change, 64(3/4): 139-145 [DOI: 10.1016/j.gloplacha.2008.04.004http://dx.doi.org/10.1016/j.gloplacha.2008.04.004]
Govaerts Y M, Lattanzio A, Taberner M and Pinty B. 2008. Generating global surface albedo products from multiple geostationary satellites. Remote Sensing of Environment, 112(6): 2804-2816 [DOI: 10.1016/j.rse.2008.01.012http://dx.doi.org/10.1016/j.rse.2008.01.012]
Guan K, Medvigy D, Wood E F, Caylor K K, Li S and Jeong S J. 2014. Deriving vegetation phenological time and trajectory information over Africa using SEVIRI daily LAI. IEEE Transactions on Geoscience and Remote Sensing, 52(2): 1113-1130 [DOI: 10.1109/tgrs.2013.2247611http://dx.doi.org/10.1109/tgrs.2013.2247611]
He T, Zhang Y, Liang S L, Yu Y Y and Wang D D. 2019. Developing land surface directional reflectance and albedo products from geostationary GOES-R and Himawari data: theoretical basis, operational implementation, and validation. Remote Sensing, 11(22): 2655 [DOI:10.3390/rs11222655http://dx.doi.org/10.3390/rs11222655]
Hou N, Zhang X T, Zhang W Y, Wei Y, Jia K, Yao Y J, Jiang B and Cheng J. 2020. Estimation of surface downward shortwave radiation over China from Himawari-8 AHI data based on random forest. Remote Sensing, 12(1): 181 [DOI: 10.3390/rs12010181http://dx.doi.org/10.3390/rs12010181]
Jang E, Kang Y, Im J, Lee D W, Yoon J and Kim S K. 2019. Detection and monitoring of forest fires using Himawari-8 geostationary satellite data in South Korea. Remote Sensing, 11(3): 271 [DOI: 10.3390/rs11030271http://dx.doi.org/10.3390/rs11030271]
Janjai S and Wattan R. 2011. Development of a model for the estimation of photosynthetically active radiation from geostationary satellite data in a tropical environment. Remote Sensing of Environment, 115(7): 1680-1693 [DOI: 10.1016/j.rse.2011.02.026http://dx.doi.org/10.1016/j.rse.2011.02.026]
Jiang G M, Li Z L and Nerry F. 2006. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI. Remote Sensing of Environment, 105(4): 326-340 [DOI: 10.1016/j.rse.2006.07.015http://dx.doi.org/10.1016/j.rse.2006.07.015]
Lattanzio A, Schulz J, Matthews J, Okuyama A, Theodore B, Bates J J, Knapp K R, Kosaka Y and Schüller L. 2013. Land surface albedo from geostationary satelites: a multiagency collaboration within SCOPE-CM. Bulletin of the American Meteorological Society, 94(2): 205-214 [DOI: 10.1175/bams-d-11-00230.1http://dx.doi.org/10.1175/bams-d-11-00230.1]
Li L, Xin X Z, Zhang H L, Yu J F, Liu Q H, Yu S S and Wen J G. 2015. A method for estimating hourly photosynthetically active radiation (PAR) in China by combining geostationary and polar-orbiting satellite data. Remote Sensing of Environment, 165: 14-26 [DOI: 10.1016/j.rse.2015.03.034http://dx.doi.org/10.1016/j.rse.2015.03.034]
Li S, Wang W L, Hashimoto H, Xiong J, Vandal T, Yao J, Qian L X, Ichii K, Lyapustin A, Wang Y J and Nemani R. 2019. First provisional land surface reflectance product from geostationary satellite Himawari-8 AHI. Remote Sensing, 11(24): 2990 [DOI: 10.3390/rs11242990http://dx.doi.org/10.3390/rs11242990]
Li X W. 2006. Remote sensing science and quantitative remote sensing. Science Focus, 1(5): 45
李小文. 2006. 遥感科学与定量遥感. 科学观察, 1(5): 45-45
Li Y N, Yu W J, Xie T and Zhou H J. 2019. Drought disaster monitoring and drought analysis based on FY-4 AGRI and Himawari-8 AHI——a case study of the autumn drought in Hebei province in 2018. Journal of Catastrophology, 34(4): 228-234
李亚男, 于文金, 谢涛, 周鸿渐. 2019. 基于FY-4 AGRI与Himawari-8 AHI的干旱灾害监测及旱情分析——以2018年河北省秋季干旱为例. 灾害学, 34(4): 228-234 [DOI: 10.3969/j.issn.1000-811X.2019.04.039http://dx.doi.org/10.3969/j.issn.1000-811X.2019.04.039]
Liu R, Wen J, Wang X, Tian H and Zhang Y. 2012. Estimation of evapotranspiration over the Yellow River's source area from national geostationary meteorological satellite data. Advances in Water Science, 23(5): 609-615
刘蓉, 文军, 王欣, 田辉, 张宇. 2012. 利用中国静止气象卫星资料估算黄河源区蒸散发量. 水科学进展, 23(5): 609-615 [DOI: 10.14042/j.cnki.32.1309.2012.05.002http://dx.doi.org/10.14042/j.cnki.32.1309.2012.05.002]
Liu X Z, He B B, Quan X W, Yebra M, Qiu S, Yin C M, Liao Z M and Zhang H G. 2018. Near real-time extracting wildfire spread rate from Himawari-8 satellite data. Remote Sensing, 10(10): 1654 [DOI: 10.3390/rs10101654http://dx.doi.org/10.3390/rs10101654]
Loew A and Govaerts Y. 2010. Towards multidecadal consistent meteosat surface albedo time series. Remote Sensing, 2(4): 957-967 [DOI: 10.3390/rs2040957http://dx.doi.org/10.3390/rs2040957]
Lu F, Zhang X H, Chen B Y, Liu H, Wu R H, Han Q, Feng X H, Li Y and Zhang Z Q. 2017. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects. Journal of Marine Meteorology, 37(2): 1-12
陆风, 张晓虎, 陈博洋, 刘辉, 吴荣华, 韩琦, 冯小虎, 李云, 张志清. 2017. 风云四号气象卫星成像特性及其应用前景. 海洋气象学报, 37(2): 1-12 [DOI: 10.19513/j.cnki.issn2096-3599.2017.02.001http://dx.doi.org/10.19513/j.cnki.issn2096-3599.2017.02.001]
Ma R, Husi L T, Shang H Z, A’na R, He J, Han X and Wang Z M. 2019. Estimation of downward surface shortwave radiation from Himawari-8 atmospheric products. Journal of Remote Sensing, 23(5): 924-934
马润, 胡斯勒图, 尚华哲, 阿娜日, 赫杰, 韩旭, 王子明. 2019. 基于葵花-8卫星大气产品的地表下行短波辐射计算. 遥感学报, 23(5): 924-934 [DOI: 10.11834/jrs.20198033http://dx.doi.org/10.11834/jrs.20198033]
Ma X L, Huete A, Tran N N, Bi J, Gao S C and Zeng Y L. 2020. Sun-angle effects on remote-sensing phenology observed and modelled using Himawari-8. Remote Sensing, 12(8): 1339 [DOI: 10.3390/rs12081339http://dx.doi.org/10.3390/rs12081339]
Martínez B, Sanchez-Ruiz S, Gilabert M A, Moreno A, Campos-Taberner M, García-Haro F J, Trigo I F, Aurela M, Brümmer C, Carrar A, De Ligne A, Gianelle D, Grünwald T, Limousin J M, Lohila A, Mammarella I, Sottocornola M, Steinbrecher R and Tagesson T. 2018. Retrieval of daily gross primary production over Europe and Africa from an ensemble of SEVIRI/MSG products. International Journal of Applied Earth Observation and Geoinformation, 65: 124-136 [DOI: 10.1016/j.jag.2017.10.011http://dx.doi.org/10.1016/j.jag.2017.10.011]
Miura T, Nagai S, Takeuchi M, Ichii K and Yoshioka H. 2019. Improved characterisation of vegetation and land surface seasonal dynamics in Central Japan with Himawari-8 hypertemporal data. Scientific Reports, 9(1): 15692 [DOI: 10.1038/s41598-019-52076-xhttp://dx.doi.org/10.1038/s41598-019-52076-x]
Monteith J L. 1972. Solar radiation and productivity in tropical ecosystems. The Journal of Applied Ecology, 9(3): 747-766 [DOI: 10.2307/2401901http://dx.doi.org/10.2307/2401901]
Nie J, Deng L, Hao X L, Liu M and He Y. 2018. Application of GF-4 satellite in drought remote sensing monitoring: a case study of Southeastern Inner Mongolia. Journal of Remote Sensing, 22(3): 400-407
聂娟, 邓磊, 郝向磊, 刘明, 贺英. 2018. 高分四号卫星在干旱遥感监测中的应用. 遥感学报, 22(3): 400-407 [DOI: 10.11834/jrs.20187067http://dx.doi.org/10.11834/jrs.20187067]
Painter T H, Rittger K, McKenzie C, Slaughter P, Davis R E and Dozier J. 2009. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sensing of Environment, 113(4): 868-879 [DOI: 10.1016/j.rse.2009.01.001http://dx.doi.org/10.1016/j.rse.2009.01.001]
Pinker R T and Laszlo I. 1992. Modeling surface solar irradiance for satellite applications on a global scale. Journal of Applied Meteorology, 31(2): 194-211 [DOI: 10.1175/1520-0450(1992)031 <0194:mssifs>2.0.co;2http://dx.doi.org/10.1175/1520-0450(1992)031<0194:mssifs>2.0.co;2]
Pinty B, Szejwach G and Stum J. 1985. Surface albedo over the sahel from METEOSAT radiances. Journal of Climate and Applied Meteorology, 24(2): 108-113 [DOI: 10.1175/1520-0450(1985)024 <0108:saotsf>2.0.co;2http://dx.doi.org/10.1175/1520-0450(1985)024<0108:saotsf>2.0.co;2]
Prata A J. 1996. A new long-wave formula for estimating downward clear-sky radiation at the surface. Quarterly Journal of the Royal Meteorological Society, 122(533): 1127-1151 [DOI: 10.1002/qj.49712253306http://dx.doi.org/10.1002/qj.49712253306]
Prins E M and Menzel W P. 1994. Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991. Journal of Geophysical Research: Atmospheres, 99(D8): 16719-16735 [DOI: 10.1029/94jd01208http://dx.doi.org/10.1029/94jd01208]
Proud S R, Zhang Q L, Schaaf C, Fensholt R, Rasmussen M O, Shisanya C, Mutero W, Mbow C, Anyamba A, Pak E and Sandholt I. 2014. The normalization of surface anisotropy effects present in SEVIRI reflectances by using the MODIS BRDF method. IEEE Transactions on Geoscience and Remote Sensing, 52(10): 6026-6039 [DOI: 10.1109/TGRS.2013.2294602http://dx.doi.org/10.1109/TGRS.2013.2294602]
Rahman H and Dedieu G. 1994. SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. International Journal of Remote Sensing, 15(1): 123-143 [DOI: 10.1080/01431169408954055http://dx.doi.org/10.1080/01431169408954055]
Ren Y H and Liu Y L. 2019. Surface water classification from GF-4 images using a time series water index. International Journal of Remote Sensing, 40(16): 6336-6364 [DOI: 10.1080/01431161.2019.1590879http://dx.doi.org/10.1080/01431161.2019.1590879]
Rosema A and Fiselier J L. 1990. Meteosat-based evapotranspiration and thermal inertia mapping for monitoring transgression in the Lake Chad region and Niger Delta. International Journal of Remote Sensing, 11(5): 741-752 [DOI: 10.1080/01431169008955054http://dx.doi.org/10.1080/01431169008955054]
Roujean J L and Bréon F M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3): 375-384 [DOI: 10.1016/0034-4257(94)00114-3http://dx.doi.org/10.1016/0034-4257(94)00114-3]
Roujean J L and Lacaze R. 2002. Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: a pragmatic method and its validation. Journal of Geophysical Research, 107(D12): ACL 6-1-ACL 6-14 [DOI: 10.1029/2001JD000751http://dx.doi.org/10.1029/2001JD000751]
Roujean J L, Leroy M and Deschamps P Y. 1992. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data. Journal of Geophysical Research, 97(D18): 20455-20468 [DOI: 10.1029/92JD01411http://dx.doi.org/10.1029/92JD01411]
Schiller K. 2006. Derivation of photosynthetically available radiation from METEOSAT data in the German Bight with neural nets. Ocean Dynamics, 56(2): 79-85 [DOI: 10.1007/s10236-006-0058-1http://dx.doi.org/10.1007/s10236-006-0058-1]
Shu Y Q, Li H J and Lei Y P. 2011. Estimation of regional evapotranspiration over the Hebei Plain using geostationary satellite data. Chinese Journal of Eco-Agriculture, 19(5): 1151-1156
舒云巧, 李红军, 雷玉平. 2011. 基于静止气象卫星的河北平原实际蒸散量遥感估算. 中国生态农业学报, 19(5): 1151-1156 [DOI: 10.3724/SP.J.1011.2011.01151http://dx.doi.org/10.3724/SP.J.1011.2011.01151]
Siljamo N and Hyvärinen O. 2011. New geostationary satellite-based snow-cover algorithm. Journal of Applied Meteorology and Climatology, 50(6): 1275-1290 [DOI: 10.1175/2010jamc2568.1http://dx.doi.org/10.1175/2010jamc2568.1]
Sun Y J, Wang Z H, Qin Q M, Han G H, Ren H Z and Huang J F. 2018. Retrieval of surface albedo based on GF-4 geostationary satellite image data. Journal of Remote Sensing, 22(2): 220-233
孙越君, 汪子豪, 秦其明, 韩谷怀, 任华忠, 黄敬峰. 2018. 高分四号静止卫星数据的地表反照率反演. 遥感学报, 22(2): 220-233 [DOI: 10.11834/jrs.20186428http://dx.doi.org/10.11834/jrs.20186428]
Sun Z G, Gebremichael M, Ardö J, Nickless A, Caquet B, Merboldh L and Kutschi W. 2012. Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data. Atmospheric Research, 112: 35-44 [DOI: 10.1016/j.atmosres.2012.04.005http://dx.doi.org/10.1016/j.atmosres.2012.04.005]
Ulivieri C, Castronuovo M M, Francioni R and Cardillo A. 1994. A split window algorithm for estimating land surface temperature from satellites. Advances in Space Research, 14(3): 59-65 [DOI: 10.1016/0273-1177(94)90193-7http://dx.doi.org/10.1016/0273-1177(94)90193-7]
Urraca R, Gracia-Amillo A M, Koubli E, Huld T, Trentmann J, Riihelä A, Lindfors A V, Palmer D, Gottschalg R and Antonanzas-Torres F. 2017. Extensive validation of CM SAF surface radiation products over Europe. Remote Sensing of Environment, 199: 171-186 [DOI: 10.1016/j.rse.2017.07.013http://dx.doi.org/10.1016/j.rse.2017.07.013]
van Wagner C E. 1987. Development and structure of the Canadian forest fire weather index system. Ottawa, Ontario: Canadian Forestry Service
Verhoef A, Ottlé C, Cappelaere B, Murray T, Saux-Picart S, Zribi M, Maignan F, Boulain N, Demarty J and Ramier D. 2012. Spatio-temporal surface soil heat flux estimates from satellite data; results for the AMMA experiment at the Fakara (Niger) supersite. Agricultural and Forest Meteorology, 154-155: 55-66 [DOI: 10.1016/j.agrformet.2011.08.003http://dx.doi.org/10.1016/j.agrformet.2011.08.003]
Verhoef W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 16(2): 125-141 [DOI: 10.1016/0034-4257(84)90 057-9http://dx.doi.org/10.1016/0034-4257(84)90057-9]
Wan Z M and Dozier J. 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905 [DOI: 10.1109/36.508406http://dx.doi.org/10.1109/36.508406]
Wang G X, Jiang L M, Shi J C, Liu X J, Yang J W and Cui H Z. 2019. Snow-covered area retrieval from Himawari-8 AHI imagery of the Tibetan Plateau. Remote Sensing, 11(20): 2391 [DOI: 10.3390/rs11202391http://dx.doi.org/10.3390/rs11202391]
Wang W L, Li S, Hashimoto H, Takenaka H, Higuchi A, Kalluri S and Nemani R. 2020. An introduction to the geostationary-NASA earth exchange (GeoNEX) products: 1. Top-of-atmosphere reflectance and brightness temperature. Remote Sensing, 12(8): 1267 [DOI: 10.3390/rs12081267http://dx.doi.org/10.3390/rs12081267]
Wang Y W, Song X N and Wang R X. 2016. Estimation of net surface shortwave radiation using FengYun-2E (FY-2E) data on cloud-free days. Journal of University of Chinese Academy of Sciences, 33(6): 769-774
王亚维, 宋小宁, 王睿馨. 2016. 晴天条件下基于FY-2E数据的地表短波净辐射的反演方法. 中国科学院大学学报, 33(6): 769-774
Wickramasinghe C H, Jones S, Reinke K and Wallace L. 2016. Development of a multi-spatial resolution approach to the surveillance of active fire lines using Himawari-8. Remote Sensing, 8(11): 932 [DOI: 10.3390/rs8110932http://dx.doi.org/10.3390/rs8110932]
Wickramasinghe C, Wallace L, Reinke K and Jones S. 2020. Intercomparison of Himawari-8 AHI-FSA with MODIS and VIIRS active fire products. International Journal of Digital Earth, 13(4): 457-473 [DOI: 10.1080/17538947.2018.1527402http://dx.doi.org/10.1080/17538947.2018.1527402]
Wooster M J, Zhukov B and Oertel D. 2003. Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 86(1): 83-107 [DOI: 10.1016/s0034-4257(03)00070-1http://dx.doi.org/10.1016/s0034-4257(03)00070-1]
Wu X. 2014. Retrieval model for estimating clear-sky downward longwave radiation at the surface from the FY-4 geostationary satellite. Climatic and Environmental Research, 19(3): 362-370
吴晓. 2014. 从FY-4静止气象卫星估算晴空地表下行长波辐射通量的反演模式. 气候与环境研究, 19(3): 362-370 [DOI: 10.3878/j.issn.1006-9585.2013.13032http://dx.doi.org/10.3878/j.issn.1006-9585.2013.13032]
Wu X, Min M and Dong L X. 2018. Estimation and diurnal variation analysis of clear-sky surface longwave radiation fluxes from Himawari08 satellite. Climatic and Environmental Research, 23(1): 37-46
吴晓, 闵敏, 董立新. 2018. 从Himawari08卫星估算晴空地表长波辐射及其日变化特征初探. 气候与环境研究, 23(1): 37-46 [DOI: 10.3878/j.issn.1006-9585.2017.16152http://dx.doi.org/10.3878/j.issn.1006-9585.2017.16152]
Xie Y Q, Xue Y, Guang J, Mei L L, She L, Li Y, Che Y H and Fan C. 2020. Deriving a global and hourly data set of aerosol optical depth over land using data from four geostationary satellites: GOES-16, MSG-1, MSG-4, and Himawari-8. IEEE Transactions on Geoscience and Remote Sensing, 58(3): 1538-1549 [DOI: 10.1109/TGRS.2019.2944949http://dx.doi.org/10.1109/TGRS.2019.2944949]
Xie Z X, Song W G, Ba R, Li X L and Xia L. 2018. A spatiotemporal contextual model for forest fire detection using Himawari-8 satellite data. Remote Sensing, 10(12): 1992 [DOI: 10.3390/rs10121992http://dx.doi.org/10.3390/rs10121992]
Xu W D, Wooster M J, Kaneko T, He J P, Zhang T R and Fisher D. 2017. Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI. Remote Sensing of Environment, 193: 138-149 [DOI: 10.1016/j.rse.2017.02.024http://dx.doi.org/10.1016/j.rse.2017.02.024]
Yan D, Zhang X Y, Yu Y Y and Guo W. 2016. A comparison of tropical rainforest phenology retrieved from geostationary (SEVIRI) and polar-orbiting (MODIS) sensors across the Congo Basin. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4867-4881 [DOI: 10.1109/TGRS.2016.2552462http://dx.doi.org/10.1109/TGRS.2016.2552462]
Yan D, Zhang X Y, Nagai S, Yu Y Y, Akitsu T, Nasahara K N, Ide R and Maeda T. 2019. Evaluating land surface phenology from the Advanced Himawari Imager using observations from MODIS and the Phenological Eyes Network. International Journal of Applied Earth Observation and Geoinformation, 79: 71-83 [DOI: 10.1016/j.jag.2019.02.011http://dx.doi.org/10.1016/j.jag.2019.02.011]
Yang J, Zhang Z Q, Wei C Y, Lu F and Guo Q. 2017. Introducing the new generation of chinese geostationary weather satellites, Fengyun-4. Bulletin of the American Meteorological Society, 98(8): 1637-1658 [DOI: 10.1175/bams-d-16-0065.1http://dx.doi.org/10.1175/bams-d-16-0065.1]
Yang J T, Jiang L M, Pan J M and Zhang L X. 2013. Study of monitoring snow cover using GOES geostationary satellite and AMSR-E. Remote Sensing Technology and Application, 28(5): 920-927
杨俊涛, 蒋玲梅, 潘金梅, 张立新. 2013. 基于GOES静止气象卫星和AMSR-E雪盖融合监测方法研究. 遥感技术与应用, 28(5): 920-927
Yang L W, Gao X Q, Li Z C, Jia D Y and Jiang J X. 2019. Nowcasting of surface solar irradiance using FengYun-4 satellite observations over China. Remote Sensing, 11(17): 1984 [DOI: 10.3390/rs11171984http://dx.doi.org/10.3390/rs11171984]
Yu Y C, Shi J C, Wang T X, Letu H S, Yuan P F, Zhou W and Hu L. 2019. Evaluation of the Himawari-8 shortwave downward radiation (SWDR) product and its comparison with the CERES-SYN, MERRA-2, and ERA-interim datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(2): 519-532 [DOI: 10.1109/jstars.2018.2851965http://dx.doi.org/10.1109/jstars.2018.2851965]
Yu Y Y, Tarpley D, Privette J L, Goldberg M D, Raja M K R V, Vinnikov K Y and Xu H. 2009. Developing algorithm for operational GOES-R land surface temperature product. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 936-951 [DOI: 10.1109/tgrs.2008.2006180http://dx.doi.org/10.1109/tgrs.2008.2006180]
Zhang H X, Xu H, Han D J, Zheng F J and Zhang W H. 2018. Dynamic dust detection method based on geostationary meteorological satellite. Remote Sensing Information, 33(1): 36-44
张海香, 徐辉, 韩道军, 郑逢杰, 张文豪. 2018. 基于静止气象卫星的动态沙尘检测方法. 遥感信息, 33(1): 36-44 [DOI: 10.3969/j.issn.1000-3177.2018.01.006http://dx.doi.org/10.3969/j.issn.1000-3177.2018.01.006]
Zhang P, Zhu L, Tang S H, Gao L, Chen L, Zheng W, Han X Z, Chen J and Shao J L. 2019. General comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications. Frontiers in Earth Science, 6: 224 [DOI: 10.3389/feart.2018.00224http://dx.doi.org/10.3389/feart.2018.00224]
Zhang W, Zhao L J, Tang P and Zheng K. 2018. A new method for fast water extraction based on multi-temporal GF-4 remote sensing imagery. Remote Sensing Information, 33(4): 108-114
张伟, 赵理君, 唐娉, 郑柯. 2018. 一种利用多时相GF-4影像的快速水体提取方法. 遥感信息, 33(4): 108-114 [DOI: 10.3969/j.issn.1000-3177.2018.04.016http://dx.doi.org/10.3969/j.issn.1000-3177.2018.04.016]
Zhang X T, Liang S L, Zhou G Q, Wu H R and Zhao X. 2014. Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sensing of Environment, 152: 318-332 [DOI: 10.1016/j.rse.2014.07.003http://dx.doi.org/10.1016/j.rse.2014.07.003]
Zhang X Y and Wang J. 2012. Estimation of surface soil moisture from onboard FY-2D satellite multi-temporal data. Chinese Journal of Eco-Agriculture, 20(7): 882-887
张霄羽, 王娇. 2012. 风云二号静止气象卫星数据估算土壤表面水分方法研究. 中国生态农业学报, 20(7): 882-887 [DOI: 10.3724/SP.J.1011.2012.00882http://dx.doi.org/10.3724/SP.J.1011.2012.00882]
Zhang X Y and Wang J. 2013. Estimation of land surface temperature using geostationary meteorological satellite data. Remote Sensing technology and Application, 28(1): 12-17
张霄羽, 王娇. 2013. 基于静止气象卫星数据的地表温度遥感估算. 遥感技术与应用, 28(1): 12-17
Zhao W H, Shan H B and Zhang Y W. 2019. Approach to the fire detection technology and the algorithm from the geostationary Himawari-8. Journal of Safety and Environment, 19(6): 2063-2073
赵文化, 单海滨, 张月维. 2019. 基于Himawari-8静止卫星森林火灾识别技术研究. 安全与环境学报, 19(6): 2063-2073 [DOI: 10.13637/j.issn.1009-6094.2019.06.027http://dx.doi.org/10.13637/j.issn.1009-6094.2019.06.027]
Zheng T, Liang S and Wang K. 2008. Estimation of incident PAR from GOES imagery. Journal of Applied Meteorology and Climatology, 47(3): 853-868 [DOI: 10.1175/2007JAMC1475.1http://dx.doi.org/10.1175/2007JAMC1475.1]
相关文章
相关作者
相关机构