塞罕坝林场机载综合遥感试验
The comprehensive airborne remote sensing experiment in Saihanba forest farm
- 2021年25卷第4期 页码:904-917
纸质出版日期: 2021-04-07
DOI: 10.11834/jrs.20210222
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-04-07 ,
扫 描 看 全 文
庞勇,梁晓军,荚文,斯林,阎广建,施建成.2021.塞罕坝林场机载综合遥感实验.遥感学报,25(4): 904-917
Pang Y,Liang X J,Jia W,Si L,Yan G J and Shi J C. 2021. The comprehensive airborne remote sensing experiment in Saihanba forest farm. National Remote Sensing Bulletin, 25(4):904-917
本文介绍了“碳循环、水循环和能量平衡遥感综合试验”中“碳循环航空试验”的小滦河流域塞罕坝森林机载综合遥感实验。阐述了森林机载遥感实验的目的、实验设计方案,观测实施过程以及数据的处理和产品生产等方面内容。实验利用中国林业科学研究院机载遥感系统CAF-LiCHy(Chinese Academy of Forestry's LiDAR,CCD and Hyperspectral airborne observation system)于2018-8-31—9-20在河北承德塞罕坝机械林场开展,共飞行10架次,获取了高精度、高空间分辨率的机载数据共1568 GB,POS位置误差2 cm,激光雷达点云密度每平方米4个以上,点云水平与垂直方向差均在0.2 m之内,数字高程模型产品空间分辨率2 m;高光谱数据的光谱分辨率优于10 nm,空间分辨率优于1 m;CCD影像空间分辨率优于0.2 m;3种传感器数据产品间的几何位置偏差在1 m内。本实验为碳水循环及森林资源监测提供了高质量的遥感数据集,体现出主、被动集成观测系统同步信息获取在森林资源监测中的优势。
This paper introduces the “Saihanba comprehensive airborne remote sensing experiment of forest resources” (The carbon cycle airborne experiment)
which is part of “The comprehensive experiment of carbon cycle
water cycle and energy balance”. This paper described the purpose
design scheme
flight mission execution
data processing and products of airborne remote sensing experiment of forest resources
respectively. The experiment focused on Saihanba Forest Farm
launched out with the monitoring of forest resources and energy balance of carbon-water cycle. 10 flights were flown from August 31 to September 20
2018 using the Chinese Academy of Forestry’s LiDAR,CCD and Hyperspectral airborne observation system (CAF-LiCHy). The raw data volume was about 1568 GB. High-level remote sensing products were produced after further data processing. The POS position has a difference within 2 cm in both horizontal and vertical directions. The LiDAR point density is larger than 4 pts/m
2
. The horizontal and vertical differences of LiDAR point cloud data are within 0.2 m. The spatial resolution of digital elevation model product is 2 m. The spectral resolution of hyperspectral image is better than 10 nm with the spatial resolution of 1 m. The spatial resolution of CCD image is 0.2 m. The overall geolocation accuracy is about 1 m among these three type sensors. This study provided high-quality datasets for carbon-water cycle and forest resources monitoring
reflected the advantages of active and passive integrated observation system in collecting forest resources simultaneously.
机载遥感激光雷达高光谱CCD森林资源监测塞罕坝林场
airborne remote sensingLiDARhyperspectralCCDforest resources monitoringsaihanba forest farm
Airbus, 2015. http://www.airbushelicopters.asia/website/cn/ref/H125_29.html (AS350 B3/H125http://www.airbushelicopters.asia/website/cn/ref/H125_29.html(AS350B3/H125产品手册. 2015) [2020-11-04]
Asner G P, Knapp D E, Kennedy-Bowdoin T, Matthew O, Jones, Martin R E, Boardman J and Field C B. 2007. Carnegie Airborne Observatory:in-flight fusion of hyperspectral imaging and waveform light detection and ranging (wLiDAR) for three-dimensional studies of ecosystems. Journal of Applied Remote Sensing, 1(013536): 1-21 [DOI: 10.1117/1.2794018http://dx.doi.org/10.1117/1.2794018]
Asner G P, Knapp D E, Boardman J, Green RO, Kennedy-Bowdoin T, Eastwood M, Martin R E, Anderson C and Field C B. 2012. Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sensing of Environment, 124(2012): 454-465 [DOI: 10.1016/j.rse.2012.06.012http://dx.doi.org/10.1016/j.rse.2012.06.012]
ASPRS. 2013. LAS Specification version 1.4-R13. USA: ASPRS: https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf [2020-11-04]
Cao L, Dai J S, Xu J X, Xu Z Q and She G H. 2014. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology. Journal of Beijing forestry university, 36(5): 13-21
曹林, 代劲松, 徐建新, 许子乾, 佘光辉. 2014. 基于机载小光斑LiDAR技术的亚热带森林参数信息优化提取. 北京林业大学学报, 36(5): 13-21 [DOI:10.13332/j.cnki.jbfu.2014.05.009http://dx.doi.org/10.13332/j.cnki.jbfu.2014.05.009]
Cao L, Coops N C, Innes J L, Stephen R J, Fu L Y, Ruan H H and She G H. 2016. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sensing of Environment, 178(2016): 158-171 [DOI: 10.1016/j.rse.2016.03.012http://dx.doi.org/10.1016/j.rse.2016.03.012]
Cook B, Corp L A, Nelson R F, Middleton E M, Morton D C, McCorkel J T, Ranson K J, Ly V and Mountesano P M. 2013. NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sensing, 5(8): 4045-4066 [DOI:10.3390/rs5084045http://dx.doi.org/10.3390/rs5084045]
Dian Y Y, Pang Y, Dong Y F and Li Z Y. 2016. Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data. Journal of the Indian Society of Remote Sensing, 44(4): 595-603. [DOI: 10.1007/s12524-015-0543-4http://dx.doi.org/10.1007/s12524-015-0543-4]
Dong Y F, Pang Y, Xu L N and Chen L Z. 2014. Feature extraction based on fusion of hyperspectral image and airborne LiDAR data. Remote Sensing Information, 29(6): 73-76+83
董彦芳, 庞勇, 许丽娜, 陈立泽. 2014. 高光谱遥感影像与机载LiDAR数据融合的地物提取方法研究. 遥感信息, 29(6): 73-76+83 [DOI: CNKI:SUN:YGXX.0.2014-06-015http://dx.doi.org/CNKI:SUN:YGXX.0.2014-06-015]
Du Y K, Wang J, Liu Z J, Yu H Y, Li Z H and Cheng H. 2018. Evaluation on Spaceborne Multispectral Images, Airborne Hyperspectral, and LiDAR Data for Extracting Spatial Distribution and Estimating Aboveground Biomass of Wetland Vegetation Suaeda salsa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(1): 200-209 [DOI: 10.1109/JSTARS.2018.2886046http://dx.doi.org/10.1109/JSTARS.2018.2886046]
Du Y K, Wang J, Lin Z J, Yu H Y, Li Z H and Cheng H. 2018. Estimating the Aboveground Biomass of Phragmites Australis (Common Reed) Based on Multi-Source Data. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE: 9241-9244 [DOI: 10.1109/IGARSS.2018.8517304http://dx.doi.org/10.1109/IGARSS.2018.8517304]
Hong Y F, Zhang S G, Chen W, Chen D S, Xiang W B and Pang Y. 2019. Inversion of biomass components for Larix olgensis plantation using airborne LiDAR. Forest Research, 32(5): 83-90
洪奕丰, 张守攻, 陈伟, 陈东升, 项伟波, 庞勇. 2019. 基于机载激光雷达的落叶松组分生物量反演. 林业科学研究, 32(5): 83-90 [DOI: 10.13275/j.cnki.lykxyj.2019.05.011http://dx.doi.org/10.13275/j.cnki.lykxyj.2019.05.011]
Krause K S, Kuester M A, Johnson B R, McCorkel J and Kampe T U. 2011. Early algorithm development efforts for the National Ecological Observatory Network Airborne Observation Platform imaging spectrometer and waveform LiDAR instruments//Imaging Spectrometry XVI. International Society for Optics and Photonics, 8158: 81580D [DOI:10.1117/12.894178http://dx.doi.org/10.1117/12.894178]
Jia W, Pang Y, Yue C R and Li Z Y. 2015. Mountain forest classification based on AISA Eagle II hyperspectral data. Forest Inventory and Planning, 40(1): 9-14
荚文, 庞勇, 岳彩荣, 李增元. 2015. 基于AISA Eagle II机载高光谱数据的普洱市山区森林分类. 林业调查规划, 40(01): 9-14 [DOI: CNKI:SUN:LDGH.0.2015-01-002http://dx.doi.org/CNKI:SUN:LDGH.0.2015-01-002]
Jia W, Nicholas C C, Tortini R, Pang Y and Black T A. 2018. Remote sensing of variation of light use efficiency in two age classes of Douglas-fir. Remote Sensing of Environment, 219(15): 284-97 [DOI: 10.1016/j.rse.2018.10.017http://dx.doi.org/10.1016/j.rse.2018.10.017]
Jia W, Pang Y, Tortini R, Schläpfer D, Li Z Y and Roujean J L. 2020. A kernel-driven BRDF approach to correct airborne hyperspectral imagery over forested areas with rugged topography. Remote Sensing, 12(3): 432 [DOI: 10.3390/rs12030432http://dx.doi.org/10.3390/rs12030432]
Li D, Gu X F, Pang Y, Chen B W and Liu L X. 2018. Estimation of forest aboveground biomass and leaf area index based on digital aerial photograph data in Northeast China. Forests, 9(5): 275 [DOI:10.3390/f9050275http://dx.doi.org/10.3390/f9050275]
Li J L, Pang Y, Li Z Y and Jia W. 2019. Tree species classification using airborne hyperspectral data in a temperate natural forest. Journal of Northeast Forestry University, 47(5): 72-76
李军玲, 庞勇, 李增元, 荚文. 2019. 机载AISA Eagle Ⅱ高光谱数据在温带天然林树种分类中的应用. 东北林业大学学报, 47(5): 72-76 [DOI: 10.13759/j.cnki.dlxb.2019.05.014http://dx.doi.org/10.13759/j.cnki.dlxb.2019.05.014]
Li J L, Pang Y, Li Z Y and Jia W. 2019. Tree species classification by airborne hyperspectral image of forest in cloud shadow area. Forest Research, 32(5): 136-141
李军玲, 庞勇, 李增元, 荚文. 2019. 云阴影区机载高光谱影像森林树种分类. 林业科学研究, 32(5): 136-141 [DOI: 10.13275/J.CNKI.LYKXYJ.2019.05.018http://dx.doi.org/10.13275/J.CNKI.LYKXYJ.2019.05.018]
Li Z Y and Chen E X. 2021. Development course of forestry remote sensing in China. Journal of Remote Sensing, 25(1):292-301
李增元, 陈尔学. 2021. 中国林业遥感发展历程. 遥感学报,25(1): 292-301 [DOI:10.11834/jrs.20211016http://dx.doi.org/10.11834/jrs.20211016]
Li Z Y, Liu Q W and Pang Y . 2016. Review on forest parameters in version using LiDAR. Journal of Remote sensing, 2051:1138-1150
) (李增元, 刘清旺, 庞勇. 2016. 激光雷达森林参数反演研究进展. 遥感学报, 20(5):1138-1150 [DOI: 10.118341jrs.20165130http://dx.doi.org/10.118341jrs.20165130]
Liu L X, Pang Y, Li Z Y, Si L and Liao S X. 2017. Combining Airborne and Terrestrial Laser Scanning Technologies to Measure Forest Understory Volume. Forests, 8(4): 111 [DOI: 10.3390/f8040111http://dx.doi.org/10.3390/f8040111]
Liu L X, Nicholas C C, Neal W A and Pang Y. 2017. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sensing of Environment, 200 (2017): 170-182 [DOI: 10.1016/j.rse.2017.08.010http://dx.doi.org/10.1016/j.rse.2017.08.010]
Liu Y J, Pang Y, Liao S X, Jia W, Chen B W and Liu L X. 2016. Merged airborne LiDAR and hyperspectral data for tree species classification in Puer’s mountainous area. Forest Research, 29(3): 407-412
刘怡君, 庞勇, 廖声熙, 荚文, 陈博伟, 刘鲁霞. 2016. 机载LiDAR和高光谱融合实现普洱山区树种分类. 林业科学研究, 29(03): 407-412 [DOI: 10.3969/j.issn.1001-1498.2016.03.015http://dx.doi.org/10.3969/j.issn.1001-1498.2016.03.015]
Lu H, Pang Y, Li Z Y and Chen B W. 2015. An Automatic Range Ambiguity Solution in High-Repetition-Rate Airborne Laser Scanner Using Priori Terrain Prediction. IEEE Geoscience and Remote Sensing Letters. 12(11): 1-5 [DOI: 10.1109/LGRS.2015.2461441http://dx.doi.org/10.1109/LGRS.2015.2461441]
Lu H,Pang Y,Li Z Y,Wang D,Chen B W and Ma Z Y. 2020. Uncertainty analysis of the absolute radiometric calibration of full waveform airborne LiDAR. Journal of Remote Sensing,24(11):1353-1362
卢昊, 庞勇, 李增元, 王迪, 陈博伟, 马振宇. 2020.全波形机载激光雷达绝对辐射定标与不确定性分析. 遥感学报, 24(11): 1353-1362 [DOI:10. 11834/jrs.20208376http://dx.doi.org/10.11834/jrs.20208376]
Ma Z Y, Pang Y, Wang D, Liang X J, Chen B W, Lu H, Weinacker H and Koch B. 2020. Individual Tree Crown Segmentation of a Larch Plantation Using Airborne Laser Scanning Data Based on Region Growing and Canopy Morphology Features. Remote Sensing, 12: 1078 [DOI: 10.3390/rs12071078http://dx.doi.org/10.3390/rs12071078]
Ma Z Y, Chen B W, Pang Y, Liao S X, Qin X L and Zhang H Q. 2020. Forest Fire potential forecast based on FCCS model. Remote Sensing for Land and Resources, 32(1): 43-50
马振宇, 陈博伟, 庞勇, 廖声熙, 覃先林, 张怀清. 2020. 基于林火特征分类模型的森林火情等级制图. 国土资源遥感, 32(1): 43-50 [DOI: 10.6046/gtzyyg.2020.01.07http://dx.doi.org/10.6046/gtzyyg.2020.01.07]
Mu X H, Yan G J, Zhou H M, Pang Y, Qiu F, Zhang Q, Zhang Y G, Xie D H, Zhou Y J, Zhao T J, Zhong B, Song J L, Sun R, Jiang L M, Yin S Y, Li F, Jiao Z T, Qu Y H, Zhang W M, Cheng S and Cui T X. 2021. Airborne comprehensive remote sensing experiment of forest and grass resources in Xiaoluan River Basin. National Remote Sensing Bulletin, 25(4): 888-903
穆西晗, 阎广建, 周红敏, 庞勇, 邱凤, 张乾, 张永光, 谢东辉, 周盈吉, 赵天杰, 仲波, 宋金玲, 孙睿, 蒋玲梅, 尹思阳, 李凡, 焦子锑, 屈永华, 张吴明, 程顺, 崔同祥. 2021. 小滦河流域复杂地表碳循环遥感综合试验. 遥感学报, 25(4): 888-903 [DOI: 10.11834/jrs.20210305http://dx.doi.org/10.11834/jrs.20210305]
Pang Y,Jia W,Qin X L,Si L,Liang X J,Lin X and Li Z Y. 2020. Forest fire monitoring using airborne optical full spectrum remote sensing data. Journal of Remote Sensing, 24(10):1280-1292
庞勇, 荚文, 覃先林, 斯林, 梁晓军, 林鑫, 李增元. 2020. 机载光学全谱段遥感林火监测. 遥感学报,24(10): 1280-1292 [DOI:10.11834/jrs.20200290http://dx.doi.org/10.11834/jrs.20200290]
Pang Y, Li Z Y, Ju H B, Lu H, Jia W, Si L, Guo Y, Liu Q W, Li S M, Liu L X, Xie B B, Tan B X and Dian Y Y. 2016. LiCHy: The CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system. Remote Sensing, 8(5): 398 [DOI: 10.3390/rs8050398http://dx.doi.org/10.3390/rs8050398]
Pang Y, Li Z Y, Meng S L, Lu H, Jia W, Liu Q W, Li H K and Lei Y C. 2016. China typical forest aboveground biomass estimation by fusion of multi-platform data. Geoscience and Remote Sensing Symposium (IGARSS), IEEE 2016: 3557-3560 [DOI: 10.1109/IGARSS.2016.7729921http://dx.doi.org/10.1109/IGARSS.2016.7729921]
Pang Y, Li Z Y, Jia W, Lu H, Chen B W, Xia Y J, Zheng G, Gao X L and Wang Q. 2016. An airborne multi-angle hyperspectral experiment in a boreal forest of Northeast China. Geoscience and Remote Sensing Symposium (IGARSS), IEEE: 1217-1220 [DOI: 10.1109/IGARSS.2016.7729308http://dx.doi.org/10.1109/IGARSS.2016.7729308]
Pang Y and Li Z Y. 2016. Subtropical forest biomass estimation using airborne LiDAR and hyperspectral data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIII ISPRS Congress, 12-19 July 2016, Prague, Czech Republic, XLI-B8, 747-749 [DOI: 10.5194/isprs-archives-XLI-B8-747-2016http://dx.doi.org/10.5194/isprs-archives-XLI-B8-747-2016]
Salas E A L. 2020. Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: a comprehensive review. Geo-Spatial Information Science, 2020: 1-22. [DOI: 10.1080/10095020.2020.1761763http://dx.doi.org/10.1080/10095020.2020.1761763]
Sharma R C, Kajiwara K and Honda Y. 2013. Estimation of forest canopy structural parameters using kernel-driven bi-directional reflectance model based multi-angular vegetation indices. ISPRS journal of photogrammetry and remote sensing. 78(1): 50-57 [DOI: 10.1016/j.isprsjprs.2012.12.006http://dx.doi.org/10.1016/j.isprsjprs.2012.12.006]
Tong X D. 2016. Development of China high-resolution earth observation system. Journal of Remote Sensing, 20(5): 775-780
童旭东. 2016. 中国高分辨率对地观测系统重大专项建设进展. 遥感学报, 20(5): 775-780 [DOI: 10.11834/jrs.20166302http://dx.doi.org/10.11834/jrs.20166302]
Wang Z S, Schaaf C B, Lewis P, Knyazikhin Y, Schull M A, Strahler A H, Yao T, Myneni R B, Chopping MJ and Blair B J. 2011. Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data. Remote Sensing of Environment, 115(6): 1595-1601 [DOI: 10.1016/j.rse.2011.02.010http://dx.doi.org/10.1016/j.rse.2011.02.010]
Wang Q, Pang Y, Li Z Y, Sun G Q, Chen E X and Ni M W. 2016. The potential of forest biomass inversion based on vegetation indices using multi-angle CHRIS/PROBA data. Remote Sensing, 8(11): 891 [DOI: 10.3390/rs8110891http://dx.doi.org/10.3390/rs8110891]
Xia Y J, Pang Y, Liu L X, Chen B W, Dong B and Huang Q F. 2019. Forest height growth monitoring of Cunninghamia lanceolata plantation using multi-temporal aerial photography with the support of high accuracy DEM. SCIENTIA SILVAE SINICAE, 55(4): 108-121
夏永杰, 庞勇, 刘鲁霞, 陈博伟, 董斌, 黄庆丰. 2019. 高精度DEM支持下的多时期航片杉木人工林树高生长监测. 林业科学, 55(4): 108-121 [DOI:10.11707/J.1001-7488.20190411http://dx.doi.org/10.11707/J.1001-7488.20190411]
Xiao P, Xie L R, Deng G Q, Sui L C, Ma H C, Zhang S D, Chu Z W and Chu Z H. 2011. Specifications for data processing of airborne LiDAR. CH/T 8023-2011,
China (肖平, 谢露蓉, 邓国庆, 隋立春, 马洪超, 张生德, 储征伟. 2011. 机载激光雷达数据处理技术规范, CH/T 8023-2011, 中国)
Xiao P, Sui L C, Deng G Q, Xie L R, Ma H C, Zhang S D, Chu Z W and Xu Z H. 2011. Specifications for data acquisition of airborne LiDAR. CH/T 8024-2011,
China (肖平, 隋立春, 邓国庆, 谢露蓉, 马洪超, 张生德, 储征伟. 2011. 机载激光雷达数据获取技术规范, CH/T 8024-2011, 中国)
Xiong H, Pang Y, Li C G and Dai H B. 2020. Sub-compartment division and interpretation of tree species based on high-resolution aerial photos. Forest Resources Management, 31(1): 143-150
熊昊, 庞勇, 李春干, 代华兵. 2020. 高分辨率航片小班区划与树种判读.林业资源管理, 31(1): 143-150 [DOI: 10.13466/j.cnki.lyzygl.2020.01.018http://dx.doi.org/10.13466/j.cnki.lyzygl.2020.01.018]
Yang H J, Yu P, Che X Y, Yu S T, Fan D D and Huang X R. 2016. Study on Scenic Beauty of Forest Interior Landscape in Saihanba Mechanized Forest Farm. Forest Resources Management, 2016(3), 98-103
杨会娟, 于泊, 车晓雨, 于士涛, 范冬冬, 黄选瑞. 2016. 塞罕坝机械林场林内景观质量评价研究. 林业资源管理, 2016(3): 98-103 [DOI: 10.13466/j.cnki.lyzygl.2016.03.018http://dx.doi.org/10.13466/j.cnki.lyzygl.2016.03.018]
Zhao D, Pang Y, Liu L J and Li Z Y. 2020. Individual Tree Classification Using Airborne LiDAR and Hyperspectral Data in a Natural Mixed Forest of Northeast China. Forests, 11(3): 303 [DOI: 10.3390/f11030303http://dx.doi.org/10.3390/f11030303]
相关作者
相关机构