珞珈一号夜间灯光数据的福建省人为热通量估算
Estimation of anthropogenic heat flux of Fujian Province (China) based on Luojia 1-01 nighttime light data
- 2022年26卷第6期 页码:1236-1246
收稿:2020-07-22,
纸质出版:2022-06-07
DOI: 10.11834/jrs.20210295
移动端阅览
收稿:2020-07-22,
纸质出版:2022-06-07
移动端阅览
夜间灯光数据是估算人为热通量(AHF)的重要数据,但当前应用最广的DMSP/OLS和Suomi-NPP/VIIRS夜间灯光数据由于受限于粗糙的空间分辨率,而无法刻画城市内部的AHF分布细节。中国2018年6月发射的Luojia 1-01卫星所获取的130 m高空间分辨率夜间灯光数据,则有望解决这一问题。因此本文利用Luojia 1-01夜间灯光数据,通过将统计年鉴中的能源统计数据细化至福建省84个县(市、区),然后与3个夜间灯光指数(NTL
nor
、HSI、VANUI)进行回归分析,分别构建了基于这3个指数的福建省AHF空间估算模型,并采用交叉验证法对其进行筛选。结果显示:(1)在3个指数中,基于VANUI的乘幂估算模型的
R
2
最高,且RMSE最小,因此精度最高;(2)利用VANUI乘幂估算模型反演得到的2018年福建省年均AHF为0.88 W/m
2
,其中厦门市的年均AHF最高,达10.98 W/m
2
,泉州、莆田、福州、漳州等沿海城市次之,年均值在0.98—1.95 W/m
2
,而宁德、龙岩、三明、南平等城市的AHF则较低,均值在0.38—0.46 W/m
2
;(3)Luojia 1-01夜间灯光数据可以揭示城市内部的AHF分异细节。根据用地属性和功能的不同,AHF数值表现为:城市集中商业区
>
大型市政公共设施区
>
城市主干道
>
城市住宅区
>
近郊住宅区。研究表明,基于Luojia 1-01夜间灯光数据建立的AHF估算模型可以较好地揭示城市尺度AHF的空间分异情况。
Nighttime light (NTL) data are important for estimating Anthropogenic Heat Flux (AHF). However
the commonly used DMSP/OLS and Suomi-NPP/VIIRS NTL data are restricted by their coarse spatial resolution and therefore
cannot exhibit the spatial details of AHF at city scale.
The 130 m high-resolution NTL data obtained by the Luojia 1-01 satellite launched in June 2018 show potential to solve this problem. Therefore
this study aims to construct an AHF estimation model using the NTL data of Luojia 1-01 for Fujian Province based on three indexes
namely
normalized nighttime light data (NTL
nor
)
Human Settlement Index (HSI)
and Vegetation Adjusted NTL Urban Index (VANUI).
To determine the best estimation model of AHF
the AHF of 84 county-level cities of Fujian Province has also been calculated using energy-consumption statistics data and then correlated with the corresponding data of three indexes.
Results show that (1) based on a five-fold cross validation approach
VANUI power estimation model achieves the highest
R
2
along with the smallest RMSE; therefore
it has the highest accuracy among the three indexes; (2) according to the VANUI power estimation model
the average annual AHF of Fujian Province in 2018 is 0.88 W/m
2
of which Xiamen has the highest average annual AHF of 10.98 W/m
2
followed by Quanzhou
Putian
Fuzhou
and Zhangzhou
with the annual average of 0.98—1.95 W/m
2
whereas the figures of Ningde
Longyan
Sanming
and Nanping are relatively low
ranging from 0.38—0.46 W/m
2
; (3) Luojia 1-01 NTL data can reveal the AHF differentiation details at a city scale. The AHF values of different land properties and functions show the following order: urban commercial area
>
large municipal public facility area
>
urban main road
>
urban residential area
>
suburban residential area.
Studies have shown that the AHF estimation model developed by Luojia 1-01 NTL data can achieve high accuracy of the city-scale estimation of AHF.
Block A , Keuler K and Schaller E . 2004 . Impacts of anthropogenic heat on regional climate patterns . Geophysical Research Letters , 31 ( 12 ): L 12211 [ DOI: 10.1029/2004GL019852 http://dx.doi.org/10.1029/2004GL019852 ]
Bohnenstengel S I , Hamilton I , Davies M and Belcher S E . 2014 . Impact of anthropogenic heat emissions on London's temperatures . Quarterly Journal of the Royal Meteorological Society , 140 ( 679 ): 687 - 698 [ DOI: 10.1002/qj.2144 http://dx.doi.org/10.1002/qj.2144 ]
Cao Z Y , Wu Z F , Kuang Y Q and Huang N S . 2015 . Correction of DMSP/OLS night-time light images and its application in China . Journal of Geo-information Science , 17 ( 9 ): 1092 - 1102
曹子阳 , 吴志峰 , 匡耀求 , 黄宁生 . 2015 . DMSP/OLS夜间灯光影像中国区域的校正及应用 . 地球信息科学学报 , 17 ( 9 ): 1092 - 1102 [ DOI: 10.3724/SP.J.1047.2015.01092 http://dx.doi.org/10.3724/SP.J.1047.2015.01092 ]
Chander G and Markham B . 2003 . Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges . IEEE Transactions on Geoscience and Remote Sensing , 41 ( 11 ): 2674 - 2677 [ DOI: 10.1109/TGRS.2003.818464 http://dx.doi.org/10.1109/TGRS.2003.818464 ]
Chavez P S . 1996 . Image-based atmospheric corrections revisited and improved . Photogrammetric Engineering and Remote Sensing , 62 ( 9 ): 1025 - 1035
Chen B , Chen L F , Dong L and Shi G Y . 2016 . Estimating the global distribution of anthropogenic heat release and exploring its possible climatic effect . Chinese Journal of Atmospheric Sciences , 40 ( 2 ): 289 - 295
陈兵 , 陈良富 , 董理 , 石广玉 . 2016 . 人为热释放: 全球分布的估算及其气候效应的探索 . 大气科学 , 40 ( 2 ): 289 - 295 [ DOI: 10.3878/j.issn.1006-9895.1504.14268 http://dx.doi.org/10.3878/j.issn.1006-9895.1504.14268 ]
Chen B , Shi G Y , Wang B , Zhao J Q and Tan S C . 2012 . Estimation of the anthropogenic heat release distribution in China from 1992 to 2009 . Acta Meteorologica Sinica , 26 ( 4 ): 507 - 515 [ DOI: 10.1007/s13351-012-0409-y http://dx.doi.org/10.1007/s13351-012-0409-y ]
Chen S S and Hu D Y . 2017 . Parameterizing anthropogenic heat flux with an energy-consumption inventory and multi-source remote sensing data . Remote Sensing , 9 ( 11 ): 1165 [ DOI: 10.3390/rs9111165 http://dx.doi.org/10.3390/rs9111165 ]
Chen Y B , Zheng Z H , Wu Z F and Qian Q L . 2019 . Review and prospect of application of nighttime light remote sensing data . Progress in Geography , 38 ( 2 ): 205 - 223
陈颖彪 , 郑子豪 , 吴志峰 , 千庆兰 . 2019 . 夜间灯光遥感数据应用综述和展望 . 地理科学进展 , 38 ( 2 ): 205 - 223 [ DOI: 10.18306/dlkxjz.2019.02.005 http://dx.doi.org/10.18306/dlkxjz.2019.02.005 ]
Elvidge C D , Baugh K E , Kihn E A , Kroehl H W and Davis E R . 1997 . Mapping city lights with nighttime data from the DMSP Operational Linescan System . Photogrammetric Engineering and Remote Sensing , 63 ( 6 ): 727 - 734
Flanner M G . 2009 . Integrating anthropogenic heat flux with global climate models . Geophysical Research Letters , 36 ( 2 ): L 02801 [ DOI: 10.1029/2008GL036465 http://dx.doi.org/10.1029/2008GL036465 ]
Fujian Province Bureau of Statistics and Fujian Survey Team of National Bureau of Statistics . 2019 . Fujian Statistical Yearbook-2019 . Beijing : China Statistics Press
福建省统计局, 国家统计局福建调查总队 . 2019 . 福建统计年鉴—2019 . 北京 : 中国统计出版社
Grimmond C S B . 1992 . The suburban energy balance: methodological considerations and results for a mid-latitude west coast city under winter and spring conditions . International Journal of Climatology , 12 ( 5 ): 481 - 497 [ DOI: 10.1002/joc.3370120506 http://dx.doi.org/10.1002/joc.3370120506 ]
He X F , Jiang W M , Chen Y and Liu G . 2007 . Numerical simulation of the impacts of anthropogenic heat on the structure of the urban boundary layer . Chinese Journal of Geophysics , 50 ( 1 ): 74 - 82
何晓凤 , 蒋维楣 , 陈燕 , 刘罡 . 2007 . 人为热源对城市边界层结构影响的数值模拟研究 . 地球物理学报 , 50 ( 1 ): 74 - 82 [ DOI: 10.3321/j.issn:0001-5733.2007.01.010 http://dx.doi.org/10.3321/j.issn:0001-5733.2007.01.010 ]
Iamarino M , Beevers S and Grimmond C S B . 2012 . High-resolution (space, time) anthropogenic heat emissions: London 1970 - 2025 . International Journal of Climatology , 32 ( 11 ): 1754 - 1767 [ DOI: 10.1002/joc.2390 http://dx.doi.org/10.1002/joc.2390 ]
Ichinose T , Shimodozono K and Hanaki K . 1999 . Impact of anthropogenic heat on urban climate in Tokyo . Atmospheric Environment , 33 ( 24/25 ): 3897 - 3909 [ DOI: 10.1016/S1352-2310(99)00132-6 http://dx.doi.org/10.1016/S1352-2310(99)00132-6 ]
Imhoff M L , Lawrence W T , Stutzer D C and Elvidge C D . 1997 . A technique for using composite DMSP/OLS “city lights” satellite data to map urban area . Remote Sensing of Environment , 61 ( 3 ): 361 - 370 [ DOI: 10.1016/S0034-4257(97)00046-1 http://dx.doi.org/10.1016/S0034-4257(97)00046-1 ]
Imhoff M L , Zhang P , Wolfe R E and Bounoua L . 2010 . Remote sensing of the urban heat island effect across biomes in the continental USA . Remote Sensing of Environment , 114 ( 3 ): 504 - 513 [ DOI: 10.1016/j.rse.2009.10.008 http://dx.doi.org/10.1016/j.rse.2009.10.008 ]
Jiang W , He G J , Long T F , Guo H X , Yin R Y , Leng W C , Liu H C and Wang G Z . 2018 . Potentiality of using Luojia 1 - 01 nighttime light imagery to investigate artificial light pollution. Sensors , 18 ( 9 ): 2900 [ DOI: 10.3390/s18092900 http://dx.doi.org/10.3390/s18092900 ]
Li D R , Zhang G , Shen X , Zhong X , Jiang Y H , Wang T Y , Tu J G and Li Z J . 2019 . Design and processing night light remote sensing of LJ-1 01 satellite . Journal of Remote Sensing , 23 ( 6 ): 1011 - 1022
李德仁 , 张过 , 沈欣 , 钟兴 , 蒋永华 , 汪韬阳 , 涂建光 , 李治江 . 2019 . 珞珈一号01星夜光遥感设计与处理 . 遥感学报 , 23 ( 6 ): 1011 - 1022 [ DOI: 10.11834/jrs.20199327 http://dx.doi.org/10.11834/jrs.20199327 ]
Lu D S , Tian H Q , Zhou G M and Ge H L . 2008 . Regional mapping of human settlements in southeastern China with multisensor remotely sensed data . Remote Sensing of Environment , 112 ( 9 ): 3668 - 3679 [ DOI: 10.1016/j.rse.2008.05.009 http://dx.doi.org/10.1016/j.rse.2008.05.009 ]
Ma P P , Wu J J , Yang X C and Qi J G . 2016 . Spatialization of anthropogenic heat using multi-sensor remote sensing data: a case study of Zhejiang Province, East China . China Environmental Scienc , 36 ( 1 ): 314 - 320
马盼盼 , 吾娟佳 , 杨续超 , 齐家国 . 2016 . 基于多源遥感信息的人为热排放量空间化——以浙江省为例 . 中国环境科学 , 36 ( 1 ): 314 - 320 [ DOI: 10.3969/j.issn.1000-6923.2016.01.052 http://dx.doi.org/10.3969/j.issn.1000-6923.2016.01.052 ]
Ma T , Zhou C H , Pei T , Haynie S and Fan J F . 2012 . Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China’s cities . Remote Sensing of Environment , 124 : 99 - 107 [ DOI: 10.1016/j.rse.2012.04.018 http://dx.doi.org/10.1016/j.rse.2012.04.018 ]
Oke T R . 1976 . The distinction between canopy and boundary-layer urban heat islands . Atmosphere , 14 ( 4 ): 268 - 277 [ DOI: 10.1080/00046973.1976.9648422 http://dx.doi.org/10.1080/00046973.1976.9648422 ]
Pal S , Xueref-Remy I , Ammoura L , Chazette P , Gibert F , Royer P , Dieudonné E , Dupont J C , Haeffelin M , Lac C , Lopez M , Morille Y and Ravetta F . 2012 . Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: an assessment of the impact of the urban heat island intensity . Atmospheric Environment , 63 : 261 - 275 [ DOI: 10.1016/j.atmosenv.2012.09.046 http://dx.doi.org/10.1016/j.atmosenv.2012.09.046 ]
Quah A K L and Roth M . 2012 . Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore . Atmospheric Environment , 46 : 92 - 103 [ DOI: 10.1016/j.atmosenv.2011.10.015 http://dx.doi.org/10.1016/j.atmosenv.2011.10.015 ]
Rizwan A M , Dennis L Y C and Liu C . 2008 . A review on the generation, determination and mitigation of Urban Heat Island . Journal of Environmental Sciences , 20 ( 1 ): 120 - 128 [ DOI: 10.1016/S1001-0742(08)60019-4 http://dx.doi.org/10.1016/S1001-0742(08)60019-4 ]
Shi K F , Yu B L , Huang Y X , Hu Y J , Yin B , Chen Z Q , Chen L J and Wu J P . 2014 . Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data . Remote Sensing , 6 ( 2 ): 1705 - 1724 [ DOI: 10.3390/rs6021705 http://dx.doi.org/10.3390/rs6021705 ]
Tong H , Liu H Z , Sang J G and Hu F . 2004 . The impact of urban anthropogenic heat on Beijing heat environment . Climatic and Environmental Research , 9 ( 3 ): 409 - 421
佟华 , 刘辉志 , 桑建国 , 胡非 . 2004 . 城市人为热对北京热环境的影响 . 气候与环境研究 , 9 ( 3 ): 409 - 421 [ DOI: 10.3969/j.issn.1006-9585.2004.03.001 http://dx.doi.org/10.3969/j.issn.1006-9585.2004.03.001 ]
Torrance K E and Shun J S W . 1976 . Time-varying energy consumption as a factor in urban climate . Atmospheric Environment ( 1967 ), 10 ( 4 ): 329 - 337 [ DOI: 10.1016/0004-6981(76)90174-8 http://dx.doi.org/10.1016/0004-6981(76)90174-8 ]
United Nations . 2019 . The 2018 revision of World urbanization prospects [EB/OL]. [ 2020-06-22 ]. https://population.un.org/wup/Publications/Files/ WUP2018-Report.pdf https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
USGS . 2019 . Landsat 8 data users handbook (Version 2.0) [EB/OL]. [ 2020-06-22 ]. https://www.usgs.gov/media/files/landsat-8-data-users-handbook https://www.usgs.gov/media/files/landsat-8-data-users-handbook
Wang C X , Chen Z Q , Yang C S , Li Q X , Wu Q S , Wu J P , Zhang G and Yu B L . 2020 . Analyzing parcel-level relationships between Luojia 1 - 01 nighttime light intensity and artificial surface features across Shanghai, China: a comparison with NPP-VIIRS data. International Journal of Applied Earth Observation and Geoinformation , 85 : 101989 [ DOI: 10.1016/j.jag.2019.101989 http://dx.doi.org/10.1016/j.jag.2019.101989 ]
Wang S S , Hu D Y , Chen S S and Yu C . 2019 . A partition modeling for anthropogenic heat flux mapping in China . Remote Sensing , 11 ( 9 ): 1132 [ DOI: 10.3390/rs11091132 http://dx.doi.org/10.3390/rs11091132 ]
Yang L J , Xu H Q and Jin Z F . 2018 . Estimation of ground-level PM 2.5 concentrations using MODIS satellite data in Fuzhou, China . Journal of Remote Sensing , 22 ( 1 ): 64 - 75
杨立娟 , 徐涵秋 , 金致凡 . 2018 . MODIS卫星遥感估计福州地区近地面PM 2.5 浓度 . 遥感学报 , 22 ( 1 ): 64 - 75 [ DOI: 10.11834/jrs.20186501 http://dx.doi.org/10.11834/jrs.20186501 ]
Yang L J , Xu H Q and Jin Z F . 2019 . Estimating ground-level PM 2.5 over a coastal region of China using satellite AOD and a combined model . Journal of Cleaner Production , 227 : 472 - 482 [ DOI: 10.1016/j.jclepro.2019.04.231 http://dx.doi.org/10.1016/j.jclepro.2019.04.231 ]
Yue W Z , Gao J B and Yang X C . 2014 . Estimation of gross domestic product using multi-sensor remote sensing data: a case study in Zhejiang Province, East China . Remote Sensing , 6 ( 8 ): 7260 - 7275 [ DOI: 10.3390/rs6087260 http://dx.doi.org/10.3390/rs6087260 ]
Zhang Q L , Schaaf C and Seto K C . 2013 . The vegetation adjusted NTL Urban Index: a new approach to reduce saturation and increase variation in nighttime luminosity . Remote Sensing of Environment , 129 : 32 - 41 [ DOI: 10.1016/j.rse.2012.10.022 http://dx.doi.org/10.1016/j.rse.2012.10.022 ]
Zhong L and Liu X S . 2019 . Application potential analysis of L J1 - 01 new nighttime light data. Bulletin of Surveying and Mapping , ( 7 ): 132 - 137
钟亮 , 刘小生 . 2019 . 珞珈一号新型夜间灯光数据应用潜力分析 . 测绘通报 , ( 7 ): 132 - 137 [ DOI: 10.13474/j.cnki.11-2246.2019.0235 http://dx.doi.org/10.13474/j.cnki.11-2246.2019.0235 ]
相关作者
相关机构
京公网安备11010802024621
