珞珈一号夜间灯光数据的福建省人为热通量估算
Estimation of anthropogenic heat flux of Fujian Province (China) based on Luojia 1-01 nighttime light data
- 2022年26卷第6期 页码:1236-1246
DOI: 10.11834/jrs.20210295
扫 描 看 全 文
扫 描 看 全 文
林中立, 徐涵秋, 林从华. 珞珈一号夜间灯光数据的福建省人为热通量估算[J]. 遥感学报, 2022,26(6):1236-1246.
Zhongli LIN, Hanqiu XU, Conghua LIN. Estimation of anthropogenic heat flux of Fujian Province (China) based on Luojia 1-01 nighttime light data[J]. National Remote Sensing Bulletin, 2022,26(6):1236-1246.
夜间灯光数据是估算人为热通量(AHF)的重要数据,但当前应用最广的DMSP/OLS和Suomi-NPP/VIIRS夜间灯光数据由于受限于粗糙的空间分辨率,而无法刻画城市内部的AHF分布细节。中国2018年6月发射的Luojia 1-01卫星所获取的130 m高空间分辨率夜间灯光数据,则有望解决这一问题。因此本文利用Luojia 1-01夜间灯光数据,通过将统计年鉴中的能源统计数据细化至福建省84个县(市、区),然后与3个夜间灯光指数(NTL,nor,、HSI、VANUI)进行回归分析,分别构建了基于这3个指数的福建省AHF空间估算模型,并采用交叉验证法对其进行筛选。结果显示:(1)在3个指数中,基于VANUI的乘幂估算模型的,R,2,最高,且RMSE最小,因此精度最高;(2)利用VANUI乘幂估算模型反演得到的2018年福建省年均AHF为0.88 W/m,2,,其中厦门市的年均AHF最高,达10.98 W/m,2,,泉州、莆田、福州、漳州等沿海城市次之,年均值在0.98—1.95 W/m,2,,而宁德、龙岩、三明、南平等城市的AHF则较低,均值在0.38—0.46 W/m,2,;(3)Luojia 1-01夜间灯光数据可以揭示城市内部的AHF分异细节。根据用地属性和功能的不同,AHF数值表现为:城市集中商业区,>,大型市政公共设施区,>,城市主干道,>,城市住宅区,>,近郊住宅区。研究表明,基于Luojia 1-01夜间灯光数据建立的AHF估算模型可以较好地揭示城市尺度AHF的空间分异情况。
Nighttime light (NTL) data are important for estimating Anthropogenic Heat Flux (AHF). However, the commonly used DMSP/OLS and Suomi-NPP/VIIRS NTL data are restricted by their coarse spatial resolution and therefore, cannot exhibit the spatial details of AHF at city scale.,The 130 m high-resolution NTL data obtained by the Luojia 1-01 satellite launched in June 2018 show potential to solve this problem. Therefore, this study aims to construct an AHF estimation model using the NTL data of Luojia 1-01 for Fujian Province based on three indexes, namely, normalized nighttime light data (NTL,nor,), Human Settlement Index (HSI), and Vegetation Adjusted NTL Urban Index (VANUI).,To determine the best estimation model of AHF, the AHF of 84 county-level cities of Fujian Province has also been calculated using energy-consumption statistics data and then correlated with the corresponding data of three indexes.,Results show that (1) based on a five-fold cross validation approach, VANUI power estimation model achieves the highest ,R,2, along with the smallest RMSE; therefore, it has the highest accuracy among the three indexes; (2) according to the VANUI power estimation model, the average annual AHF of Fujian Province in 2018 is 0.88 W/m,2, of which Xiamen has the highest average annual AHF of 10.98 W/m,2, followed by Quanzhou, Putian, Fuzhou, and Zhangzhou, with the annual average of 0.98—1.95 W/m,2, whereas the figures of Ningde, Longyan, Sanming, and Nanping are relatively low, ranging from 0.38—0.46 W/m,2,; (3) Luojia 1-01 NTL data can reveal the AHF differentiation details at a city scale. The AHF values of different land properties and functions show the following order: urban commercial area ,>, large municipal public facility area ,>, urban main road ,>, urban residential area ,>, suburban residential area.,Studies have shown that the AHF estimation model developed by Luojia 1-01 NTL data can achieve high accuracy of the city-scale estimation of AHF.
遥感人为热AHF珞珈一号01星夜间灯光影像福建省
remote sensinganthropogenic heatAHFLuojia 1-01nighttime light imageryFujian Province
Block A, Keuler K and Schaller E. 2004. Impacts of anthropogenic heat on regional climate patterns. Geophysical Research Letters, 31(12): L12211 [DOI: 10.1029/2004GL019852http://dx.doi.org/10.1029/2004GL019852]
Bohnenstengel S I, Hamilton I, Davies M and Belcher S E. 2014. Impact of anthropogenic heat emissions on London's temperatures. Quarterly Journal of the Royal Meteorological Society, 140(679): 687-698 [DOI: 10.1002/qj.2144http://dx.doi.org/10.1002/qj.2144]
Cao Z Y, Wu Z F, Kuang Y Q and Huang N S. 2015. Correction of DMSP/OLS night-time light images and its application in China. Journal of Geo-information Science, 17(9): 1092-1102
曹子阳, 吴志峰, 匡耀求, 黄宁生. 2015. DMSP/OLS夜间灯光影像中国区域的校正及应用. 地球信息科学学报, 17(9): 1092-1102 [DOI: 10.3724/SP.J.1047.2015.01092http://dx.doi.org/10.3724/SP.J.1047.2015.01092]
Chander G and Markham B. 2003. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2674-2677 [DOI: 10.1109/TGRS.2003.818464http://dx.doi.org/10.1109/TGRS.2003.818464]
Chavez P S. 1996. Image-based atmospheric corrections revisited and improved. Photogrammetric Engineering and Remote Sensing, 62(9): 1025-1035
Chen B, Chen L F, Dong L and Shi G Y. 2016. Estimating the global distribution of anthropogenic heat release and exploring its possible climatic effect. Chinese Journal of Atmospheric Sciences, 40(2): 289-295
陈兵, 陈良富, 董理, 石广玉. 2016. 人为热释放: 全球分布的估算及其气候效应的探索. 大气科学, 40(2): 289-295 [DOI: 10.3878/j.issn.1006-9895.1504.14268http://dx.doi.org/10.3878/j.issn.1006-9895.1504.14268]
Chen B, Shi G Y, Wang B, Zhao J Q and Tan S C. 2012. Estimation of the anthropogenic heat release distribution in China from 1992 to 2009. Acta Meteorologica Sinica, 26(4): 507-515 [DOI: 10.1007/s13351-012-0409-yhttp://dx.doi.org/10.1007/s13351-012-0409-y]
Chen S S and Hu D Y. 2017. Parameterizing anthropogenic heat flux with an energy-consumption inventory and multi-source remote sensing data. Remote Sensing, 9(11): 1165 [DOI: 10.3390/rs9111165http://dx.doi.org/10.3390/rs9111165]
Chen Y B, Zheng Z H, Wu Z F and Qian Q L. 2019. Review and prospect of application of nighttime light remote sensing data. Progress in Geography, 38(2): 205-223
陈颖彪, 郑子豪, 吴志峰, 千庆兰. 2019. 夜间灯光遥感数据应用综述和展望. 地理科学进展, 38(2): 205-223 [DOI: 10.18306/dlkxjz.2019.02.005http://dx.doi.org/10.18306/dlkxjz.2019.02.005]
Elvidge C D, Baugh K E, Kihn E A, Kroehl H W and Davis E R. 1997. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing, 63(6): 727-734
Flanner M G. 2009. Integrating anthropogenic heat flux with global climate models. Geophysical Research Letters, 36(2): L02801 [DOI: 10.1029/2008GL036465http://dx.doi.org/10.1029/2008GL036465]
Fujian Province Bureau of Statistics and Fujian Survey Team of National Bureau of Statistics. 2019. Fujian Statistical Yearbook-2019. Beijing: China Statistics Press
福建省统计局, 国家统计局福建调查总队. 2019. 福建统计年鉴—2019. 北京: 中国统计出版社
Grimmond C S B. 1992. The suburban energy balance: methodological considerations and results for a mid-latitude west coast city under winter and spring conditions. International Journal of Climatology, 12(5): 481-497 [DOI: 10.1002/joc.3370120506http://dx.doi.org/10.1002/joc.3370120506]
He X F, Jiang W M, Chen Y and Liu G. 2007. Numerical simulation of the impacts of anthropogenic heat on the structure of the urban boundary layer. Chinese Journal of Geophysics, 50(1): 74-82
何晓凤, 蒋维楣, 陈燕, 刘罡. 2007. 人为热源对城市边界层结构影响的数值模拟研究. 地球物理学报, 50(1): 74-82 [DOI: 10.3321/j.issn:0001-5733.2007.01.010http://dx.doi.org/10.3321/j.issn:0001-5733.2007.01.010]
Iamarino M, Beevers S and Grimmond C S B. 2012. High-resolution (space, time) anthropogenic heat emissions: London 1970-2025. International Journal of Climatology, 32(11): 1754-1767 [DOI: 10.1002/joc.2390http://dx.doi.org/10.1002/joc.2390]
Ichinose T, Shimodozono K and Hanaki K. 1999. Impact of anthropogenic heat on urban climate in Tokyo. Atmospheric Environment, 33(24/25): 3897-3909 [DOI: 10.1016/S1352-2310(99)00132-6http://dx.doi.org/10.1016/S1352-2310(99)00132-6]
Imhoff M L, Lawrence W T, Stutzer D C and Elvidge C D. 1997. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sensing of Environment, 61(3): 361-370 [DOI: 10.1016/S0034-4257(97)00046-1http://dx.doi.org/10.1016/S0034-4257(97)00046-1]
Imhoff M L, Zhang P, Wolfe R E and Bounoua L. 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3): 504-513 [DOI: 10.1016/j.rse.2009.10.008http://dx.doi.org/10.1016/j.rse.2009.10.008]
Jiang W, He G J, Long T F, Guo H X, Yin R Y, Leng W C, Liu H C and Wang G Z. 2018. Potentiality of using Luojia 1-01 nighttime light imagery to investigate artificial light pollution. Sensors, 18(9): 2900 [DOI: 10.3390/s18092900http://dx.doi.org/10.3390/s18092900]
Li D R, Zhang G, Shen X, Zhong X, Jiang Y H, Wang T Y, Tu J G and Li Z J. 2019. Design and processing night light remote sensing of LJ-1 01 satellite. Journal of Remote Sensing, 23(6): 1011-1022
李德仁, 张过, 沈欣, 钟兴, 蒋永华, 汪韬阳, 涂建光, 李治江. 2019. 珞珈一号01星夜光遥感设计与处理. 遥感学报, 23(6): 1011-1022 [DOI: 10.11834/jrs.20199327http://dx.doi.org/10.11834/jrs.20199327]
Lu D S, Tian H Q, Zhou G M and Ge H L. 2008. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sensing of Environment, 112(9): 3668-3679 [DOI: 10.1016/j.rse.2008.05.009http://dx.doi.org/10.1016/j.rse.2008.05.009]
Ma P P, Wu J J, Yang X C and Qi J G. 2016. Spatialization of anthropogenic heat using multi-sensor remote sensing data: a case study of Zhejiang Province, East China. China Environmental Scienc, 36(1): 314-320
马盼盼, 吾娟佳, 杨续超, 齐家国. 2016. 基于多源遥感信息的人为热排放量空间化——以浙江省为例. 中国环境科学, 36(1): 314-320 [DOI: 10.3969/j.issn.1000-6923.2016.01.052http://dx.doi.org/10.3969/j.issn.1000-6923.2016.01.052]
Ma T, Zhou C H, Pei T, Haynie S and Fan J F. 2012. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China’s cities. Remote Sensing of Environment, 124: 99-107 [DOI: 10.1016/j.rse.2012.04.018http://dx.doi.org/10.1016/j.rse.2012.04.018]
Oke T R. 1976. The distinction between canopy and boundary-layer urban heat islands. Atmosphere, 14(4): 268-277 [DOI: 10.1080/00046973.1976.9648422http://dx.doi.org/10.1080/00046973.1976.9648422]
Pal S, Xueref-Remy I, Ammoura L, Chazette P, Gibert F, Royer P, Dieudonné E, Dupont J C, Haeffelin M, Lac C, Lopez M, Morille Y and Ravetta F. 2012. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: an assessment of the impact of the urban heat island intensity. Atmospheric Environment, 63: 261-275 [DOI: 10.1016/j.atmosenv.2012.09.046http://dx.doi.org/10.1016/j.atmosenv.2012.09.046]
Quah A K L and Roth M. 2012. Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmospheric Environment, 46: 92-103 [DOI: 10.1016/j.atmosenv.2011.10.015http://dx.doi.org/10.1016/j.atmosenv.2011.10.015]
Rizwan A M, Dennis L Y C and Liu C. 2008. A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1): 120-128 [DOI: 10.1016/S1001-0742(08)60019-4http://dx.doi.org/10.1016/S1001-0742(08)60019-4]
Shi K F, Yu B L, Huang Y X, Hu Y J, Yin B, Chen Z Q, Chen L J and Wu J P. 2014. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data. Remote Sensing, 6(2): 1705-1724 [DOI: 10.3390/rs6021705http://dx.doi.org/10.3390/rs6021705]
Tong H, Liu H Z, Sang J G and Hu F. 2004. The impact of urban anthropogenic heat on Beijing heat environment. Climatic and Environmental Research, 9(3): 409-421
佟华, 刘辉志, 桑建国, 胡非. 2004. 城市人为热对北京热环境的影响. 气候与环境研究, 9(3): 409-421 [DOI: 10.3969/j.issn.1006-9585.2004.03.001http://dx.doi.org/10.3969/j.issn.1006-9585.2004.03.001]
Torrance K E and Shun J S W. 1976. Time-varying energy consumption as a factor in urban climate. Atmospheric Environment (1967), 10(4): 329-337 [DOI: 10.1016/0004-6981(76)90174-8http://dx.doi.org/10.1016/0004-6981(76)90174-8]
United Nations. 2019. The 2018 revision of World urbanization prospects[EB/OL]. [2020-06-22]. https://population.un.org/wup/Publications/Files/ WUP2018-Report.pdfhttps://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
USGS. 2019. Landsat 8 data users handbook (Version 2.0)[EB/OL]. [2020-06-22]. https://www.usgs.gov/media/files/landsat-8-data-users-handbookhttps://www.usgs.gov/media/files/landsat-8-data-users-handbook
Wang C X, Chen Z Q, Yang C S, Li Q X, Wu Q S, Wu J P, Zhang G and Yu B L. 2020. Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: a comparison with NPP-VIIRS data. International Journal of Applied Earth Observation and Geoinformation, 85: 101989 [DOI: 10.1016/j.jag.2019.101989http://dx.doi.org/10.1016/j.jag.2019.101989]
Wang S S, Hu D Y, Chen S S and Yu C. 2019. A partition modeling for anthropogenic heat flux mapping in China. Remote Sensing, 11(9): 1132 [DOI: 10.3390/rs11091132http://dx.doi.org/10.3390/rs11091132]
Yang L J, Xu H Q and Jin Z F. 2018. Estimation of ground-level PM2.5 concentrations using MODIS satellite data in Fuzhou, China. Journal of Remote Sensing, 22(1): 64-75
杨立娟, 徐涵秋, 金致凡. 2018. MODIS卫星遥感估计福州地区近地面PM2.5浓度. 遥感学报, 22(1): 64-75 [DOI: 10.11834/jrs.20186501http://dx.doi.org/10.11834/jrs.20186501]
Yang L J, Xu H Q and Jin Z F. 2019. Estimating ground-level PM2.5 over a coastal region of China using satellite AOD and a combined model. Journal of Cleaner Production, 227: 472-482 [DOI: 10.1016/j.jclepro.2019.04.231http://dx.doi.org/10.1016/j.jclepro.2019.04.231]
Yue W Z, Gao J B and Yang X C. 2014. Estimation of gross domestic product using multi-sensor remote sensing data: a case study in Zhejiang Province, East China. Remote Sensing, 6(8): 7260-7275 [DOI: 10.3390/rs6087260http://dx.doi.org/10.3390/rs6087260]
Zhang Q L, Schaaf C and Seto K C. 2013. The vegetation adjusted NTL Urban Index: a new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sensing of Environment, 129: 32-41 [DOI: 10.1016/j.rse.2012.10.022http://dx.doi.org/10.1016/j.rse.2012.10.022]
Zhong L and Liu X S. 2019. Application potential analysis of LJ1-01 new nighttime light data. Bulletin of Surveying and Mapping, (7): 132-137
钟亮, 刘小生. 2019. 珞珈一号新型夜间灯光数据应用潜力分析. 测绘通报, (7): 132-137 [DOI: 10.13474/j.cnki.11-2246.2019.0235http://dx.doi.org/10.13474/j.cnki.11-2246.2019.0235]
相关作者
相关机构