小滦河流域复杂地表碳循环遥感综合试验
Airborne comprehensive remote sensing experiment of forest and grass resources in Xiaoluan River Basin
- 2021年25卷第4期 页码:888-903
纸质出版日期: 2021-04-07
DOI: 10.11834/jrs.20210305
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-04-07 ,
扫 描 看 全 文
穆西晗,阎广建,周红敏,庞勇,邱凤,张乾,张永光,谢东辉,周盈吉,赵天杰,仲波,宋金玲,孙睿,蒋玲梅,尹思阳,李凡,焦子锑,屈永华,张吴明,程顺,崔同祥.2021.小滦河流域复杂地表碳循环遥感综合试验.遥感学报,25(4): 888-903
Mu X H,Yan G J,Zhou H M,Pang Y,Qiu F,Zhang Q,Zhang Y G,Xie D H,Zhou Y J,Zhao T J,Zhong B,Song J L,Sun R,Jiang L M,Yin S Y,Li F,Jiao Z T,Qu Y H, Zhang W M,Cheng S and Cui T X. 2021. Airborne comprehensive remote sensing experiment of forest and grass resources in Xiaoluan River Basin. National Remote Sensing Bulletin, 25(4):888-903
遥感综合试验对于遥感科学技术的发展起到重要作用,无论是基础研究还是遥感应用都需要试验提供支撑。从2018年开始,遥感科学国家重点实验室针对遥感自身发展和遥感面向地表圈层深化应用面临的科学问题,在滦河上游流域组织了小滦河流域复杂地表碳循环遥感综合观测试验,本文旨在介绍该试验的目标、区域、观测参数、观测方法以及对未来研究的展望,以期望为今后开展其他遥感试验及相关研究提供有益的参考和帮助。该试验采用星机地协同综合观测的方式,选择主要的在轨运行卫星数据及覆盖此流域的遥感产品作为主要数据;针对典型区域开展航空及无人机遥感试验,搭载光学传感器设备,获取典型区域水热循环、碳循环等关键参数;并同步开展地面观测试验,在典型实验区开展大气、植被和土壤关键参数的精细观测。目前已系统的开展了地面测量试验、无人机遥感试验及航空遥感试验,并同步收集了卫星遥感数据,形成了一套丰富的星—机—地配套遥感实测数据集。在试验的推动下,遥感科学国家重点实验室于2020年在试验区架设了多座综合观测塔,并配置了多种观测设备,开启了长时间序列观测任务,虚拟试验场的构建和机理生态模型的运行也在同步开展。小滦河流域复杂地表碳循环遥感综合试验利用星—机—地一体化的监测方法有效获取了地表水、能量和碳循环的关键参数,为遥感机理模型发展、反演方法检验和尺度转换研究提供了关键的基础数据。目前已用来建立遥感机理模型的综合检验平台,分析和改进传统模型和遥感产品在复杂地表的适用性,阐明流域尺度碳水耦合的物理过程。
Comprehensive remote sensing experiments play an important role in the development of remote sensing science and technology. Both the fundamental research and application of remote sensing need to be supported by experiments. The State Key Laboratory of Remote Sensing Science (SLRSS) has organized a large remote sensing experiment for the studies of carbon cycle over complex land surfaces in the upper reaches of the Xiaoluan River basin since 2018. This paper is targeted to introduce the objectives
study regions
observation parameters
methods and prospects of the experiment and to provide a useful reference for the design of remote sensing experiments.
The experiment adopted the satellite
airborne
and ground-based remote sensing
collected the data from the satellites in orbit and the remote sensing products covering the study region. The aerial and Unmanned Aerial Vehicle (UAV) remote sensing experiments were carried out with optical sensors to obtain key parameters of water cycle
carbon cycle and energy flow. Ground observation experiments were synchronously carried out to monitor the key parameters of atmosphere
vegetation and soil.
Rich amount of remote sensing data were collected from ground observation experiments
UAV and aerial remote sensing experiments. Driven by the experiment
the SLRSS set up a number of comprehensive observation towers in the experimental area in 2020
equipped with a variety of observation instruments and started long time series observation task. The construction of the large scale virtual scenery for remote sensing experiment and the operation of the BEPS (Boreal Ecosystem Productivity Simulator) model are being carried out.
The comprehensive experiment on carbon cycle at complex surfaces in Xiaoluan River basin has effectively obtained the key parameters of surface water
energy and carbon cycles by using the satellite
airborne
and ground-based remote sensing. The experiment provides the important basic data for the development of remote sensing mechanism model
inversion method and scale transformation research. It has been used to establish a comprehensive validation platform for remote sensing mechanism models
to improve the applicability of remote sensing products at complex surfaces
and to clarify the physical process of carbon-water coupling on watershed scale.
遥感综合试验流域尺度碳循环小滦河塞罕坝
remote sensingcomprehensive experimentwatershed scalecarbon cycleXiaoluan RiverSaihanba
Cao L, Liu K, Shen X, Wu X and Liu H. 2019. Estimation of forest structural parameters using UAV-LiDAR data and a Process-Based model in ginkgo planted forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(11): 4175-4190
Chen X F, Chen J M, An S Q and Ju W M. 2007. Effects of topography on simulated net primary productivity at landscape scale. J Environ Manage, 85(3): 585-96
Cohen W B and Justice C O. 1999. Validating MODIS terrestrial ecology products: Linking in situ and satellite measurements. Remote Sensing of Environment, 70(1): 1-3
Crowther T W, Glick H B, Covey K R, Bettigole C, Maynard D S, Thomas S M, Smith J R, Hintler G, Duguid M C, Amatulli G, Tuanmu M-N, Salas W, Jetz C, Stam C, Piotto D, Tavani R, Green S, Bruce G, Williams S J, Wiser S K, Huber M O, Hengeveld G M, Nabuurs G-J, Tikhonova E, Borchardt P, Li C-F, Powrie L W, Fischer M, Hemp A, Homeier J, Cho P, Vibrans A C, Umunay P M, Piao S L, Rowe C W, Ashton M S, Crane P R & Bradford M A. 2015. Mapping tree density at a global scale. Nature. 525: 201-205
Foley J A, DeFries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S, Coe M T, Daily G C, Gibbs H K, Helkowski J H, Holloway T, Howard E A, Kucharik C J, Monfreda C, Patz J A, Prentice I C, Ramankutty N and Snyder P K. 2005. Global consequences of land use. Science, 309(5734): 570-574
Guo Q H, Su Y J, Hu T Y and Liu J. 2018. LiDAR forest ecological applications: theory, method and examples. Beijing: Higher Education Press
郭庆华, 苏艳军, 胡天宇, 刘瑾. 2018. 激光雷达森林生态应用——理论、方法及实例. 北京: 高等教育出版社
Hansen M C, Potapov P V, Moore R, Hancher M, Turubanova S A, Tyukavina A, Thau D, Stehman S V, Goetz S J, Loveland T R, Kommareddy A, Egorov A, Chini L, Justice C O and Townshend J R G. 2013. High-Resolution global maps of 21st-Century forest cover change. Science, 342(6160): 850-853
Harron J. 2000. Optical Properties of Phytoelements in Conifers. In, Graduate Programme in Earth and Space Science. North York, Ontario, Canada: York University
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
Liu J, Chen J M, Cihlar J and Park W M. 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment. 62(2): 158-175
Li L , Chen J , Mu X , Li W , Yan G , Xie D and Zhang W. 2020. Quantifying understory and overstory vegetation cover using UAV-Based RGB imagery in forest plantation. Remote Sensing, 12(2): 298
Li L , Mu X , Macfarlane C , Song W , Chen J , Yan K and Yan G. 2018. A half-Gaussian fitting method for estimating fractional vegetation cover of corn crops using unmanned aerial vehicle images. Agricultural and Forest Meteorology, 262: 379-390
Li X, Cheng G, Liu S, Xiao Q, Ma M, Jin R, Che T, Liu Q, Wang W, Qi Y, Wen J, Li H, Zhu G, Guo J, Ran Y, Wang S, Zhu Z, Zhou J, Hu X and Xu Z. 2013. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8): 1145-1160
Li X, Li X, Li Z, Ma M, Wang J, Xiao Q, Liu Q, Che T, Chen E, Yan G, Hu Z, Zhang L, Chu R, Su P, Liu Q, Liu S, Wang J, Niu Z, Chen Y, Jin R, Wang W, Ran Y, Xin X and Ren H. 2009. Watershed allied telemetry experimental research. Journal of Geophysical Research, 114(D22)
Li Z Y, Liu Q H, Yan G J, Wang J D, Niu Z, Jiang L M and Chen E X. 2019. Quantitative remote sensing model and inversion in complex surface. Beijing: Science press
李增元, 柳钦火, 阎广建, 王锦地, 牛铮, 蒋玲梅, 陈尔学. 2019. 复杂地表定量遥感模型与反演. 北京: 科学出版社
Liu Q, Yan G, Jiao Z, Xiao Q, Wen J, Liang S, Wang J, Schaaf C and Strahler A. 2018. From Geometric-Optical remote sensing modeling to quantitative remote sensing science—in memory of academician xiaowen li. Remote Sensing, 10(11): 1764
Marvin D C, Asner G P, Knapp D E, Anderson C B, Martin R E, Sinca F and Tupayachi R. 2014. Amazonian landscapes and the bias in field studies of forest structure and biomass. Proceedings of the National Academy of Sciences, 111(48): E5224-E5232
Otsu N. 1979. A Tlreshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66
Pang Y, Li Z Y, Ju H B, Lu H, Jia W, Si L, Guo Y, Liu Q W, Li S M, Liu L X, Xie B B, Tan B X and Dian Y Y. 2016. LiCHy: The CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system. Remote Sensing, 8(5): 398 [DOI: 10.3390/rs8050398http://dx.doi.org/10.3390/rs8050398]
Pang Y, Liang X J, Jia W, Si L, Yan G J and Shi J C. 2021. The comprehensive airborne remote sensing experiment in Saihanba forest farm. National Remote Sensing Bulletin, 25(4): 904-917
庞勇,梁晓军,荚文,斯林,阎广建,施建成. 2021. 塞罕坝林场机载综合遥感实验. 遥感学报, 25(4): 904-917 [DOI: 10.11834/jrs.20210222http://dx.doi.org/10.11834/jrs.20210222]
Qi J , Xie D , Yin T , Yan G , Gastellu-Etchegorry J , Li L , Zhang W , Mu X and Norford L K. 2019. LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sensing of Environment, 221: 695-706
Rossello P and Baret F. 2007. VALidation of Land European Remote Sensing Instruments. INRA, Davos.
Sellers P J, Hall F G, Asrar G, Strebel D E and Murphy R E. 1988. The first ISLSCP field experiment (FIFE). Bulletin American Meteorological Society, 69(1): 22-27
Sellers P, Hall F, Margolis H, Kelly B, Baldocchi D, den Hartog G, Cihlar J, Ryan M G, Goodison B, Ranson P C K J, Lettenmaier D and Wickland D E. 1995. The Boreal Ecosystem–Atmosphere Study (BOREAS): An Overview and Early Results from the 1994 Field Year. Bulletin American Meteorological Society, 76(9): 1549-1577
Song W, Mu X, Yan G and Huang S. 2015. Extracting the green fractional vegetation cover from digital images using a Shadow-Resistant algorithm (SHAR-LABFVC). Remote Sensing, 7(8): 10425-10443
Tian X, Li Z, Chen E, Liu Q, Yan G, Wang J, Niu Z, Zhao S, Li X, Pang Y, Su Z, van der Tol C, Liu Q, Wu C, Xiao Q, Yang L, Mu X, Bo Y, Qu Y, Zhou H, Gao S, Chai L, Huang H, Fan W, Li S, Bai J, Jiang L and Zhou J. 2015. The complicate observations and Multi-Parameter land information constructions on allied telemetry experiment (COMPLICATE). PLOS ONE, 10(9): e0137545
Ullman S. 1979. The Interpretation of Structure from Motion. Proceedings of the Royal Society of London. Series B, Biological Sciences, 203(1153): 405-426
Widlowski J L, Pinty B, Lopatka M, Atzberger C, Buzica D, Chelle M, Disney M, Gastellu-Etchegorry J, Gerboles M, Gobron N, Grau E, Huang H, Kallel A, Kobayashi H, Lewis P E, Qin W, Schlerf M, Stuckens J and Xie D. 2013. The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528. Journal of Geophysical Research: Atmospheres, 118(13): 6869-6890
Wu X, Xiao Q, Wen J, You D and Hueni A. 2019. Advances in quantitative remote sensing product validation: Overview and current status. Earth-Science Reviews, 196102875
Xia J, Chen J, Piao S, Ciais P, Luo Y and Wan S. 2014. Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience, 7(3): 173-180
Xi X H, Luo S Z, Wang F J and Wang C. 2012. Current situation and development review of terrestrial 3D laser scanning system. Geospatial Information, 10(6): 13-15
习晓环, 骆社周, 王方建, 王成. 2012. 地面三维激光扫描系统现状及发展评述. 地理空间信息, 10(6): 13-15
Yan G, Chu Q, Tong Y, Mu X, Qi J, Zhou Y, Liu Y, Wang T, Xie D, Zhang W, Yan K, Chen S and Zhou H. 2020. An operational method for validating the downward shortwave radiation over rugged terrains. IEEE transactions on geoscience and remote sensing: 1-18
Yan G J, Zhao T J, Mu X H, Wen J G, Pang Y, Zhang Y G, Chen D Q, Yao C B, Cao Z Y, Lei Y H, Ji D B, Chen L F, Liu Q H, Lu L Q, Chen J M and Shi J C. 2021. Comprehensive Remote Sensing Experiment of Carbon Cycle, Water Cycle and Energy Balance in Luan River Basin. National Remote Sensing Bulletin, 25(4): 856-870
阎广建, 赵天杰, 穆西晗, 闻建光, 庞勇, 张永光, 陈德清, 姚崇斌, 曹志宇, 雷永荟, 姬大彬, 陈良富, 柳钦火, 吕利清, 陈镜明, 施建成. 2021. 滦河流域碳、水循环和能量平衡遥感综合试验总体设计. 遥感学报, 25(4): 856-870
Zhang X , Qiu F , Zhan C , Zhang Q , Li Z , Wu Y , Huang Y and Chen X. 2020. Acquisitions and applications of forest canopy hyperspectral imageries at hotspot and multiview angle using unmanned aerial vehicle platform. Journal of Applied Remote Sensing , 14(2): 022212
Zhang Y, Chen J M, Miller J R and Noland T L. 2008. Retrieving chlorophyll content in conifer needles from hyperspectral measurements. Canadian Journal of Remote Sensing, 34, 296-310
相关作者
相关机构