机载L波段主被动一体化微波探测仪辐射计定标
Radiometer calibration of airborne L-band active and passive microwave detector
- 2021年25卷第4期 页码:918-928
纸质出版日期: 2021-04-07
DOI: 10.11834/jrs.20210358
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-04-07 ,
扫 描 看 全 文
孙彦龙,赵天杰,李恩晨,栾英宏,万国愚,徐红新,赵锋,姚崇斌,吕利清,胡路,耿德源.2021.机载L波段主被动一体化微波探测仪辐射计定标.遥感学报,25(4): 918-928
Sun Y L,Zhao T J,Li E C,Luan Y H,Wan G Y,Xu H X,Zhao F,Yao C B,Lyu L Q,Hu L and Geng D Y. 2021. Radiometer calibration of airborne L-band active and passive microwave detector. National Remote Sensing Bulletin, 25(4):918-928
遥感试验是进行遥感原理的验证、遥感模型与反演方法的发展、遥感产品的真实性检验,推动卫星计划的论证实施及其观测在地球系统科学中应用的重要途径。在闪电河流域水循环与能量平衡遥感综合试验中,利用机载L波段主被动一体化微波探测仪开展了以土壤水分为首要目标的大型航空遥感试验。其中,被动探测部分即微波辐射计采用微带天线,辅以机械扫描方式进行多角度成像观测。为有效支撑微波辐射计数据的处理及定量反演,必须对机载微波辐射计进行实时定标,本文采用分步定标法进行辐射亮温的定标,即在实验室对定标链路中的噪声源进行定标,得出对应的辐射亮温;飞行试验中,利用该两个参考点得到辐射计输出电压和亮温的关系,同时选取试验区域附近的水体作为外定标参考点,进行定标方程的修正。结果表明,机载辐射亮温与地面参考点(草地)模拟亮温比较吻合,二者对比结果显示均方根误差最小为0.93 K(2018-09-26,H极化),无偏均方根误差最小为0.96 K(2018-09-24,V极化),有效支撑了国产L波段微波辐射计相关卫星计划的论证以及后续的定量反演与降尺度等相关研究工作的开展。
The remote sensing experiment is an important way to verify the principle of remote sensing
develop remote sensing models and retrieval algorithms
and to validate remote sensing products. It is also important to promote the demonstration of satellite missions and the application of its observations in earth system science. In the ShanDian River comprehensive remote sensing experiment
a large-scale aerial remote sensing experiment with soil moisture as the primary target was carried out using the airborne L-band active and passive microwave sounder. The passive detection part
the microwave radiometer
uses a microstrip antenna
supplemented by a mechanical scanning method for multi-angle imaging observation. In order to effectively support the development of remote sensing models and algorithms
real-time calibration of brightness temperature must be performed. This paper introduces a distributed calibration method combining internal and external calibration.
Due to the limitation of the space and weight of the aircraft
the end-to-end calibration method cannot be used to calibrate the system. Therefore
the step-by-step calibration method is used in the test. First use Standard noise generator on the ground to calibrate the brightness temperature of the internal noise source
and then measure the antenna radiation efficiency
main beam efficiency
cable loss and other parameters. During the flight
use the reference load and the internal noise source as the two-point standard sources. The relationship between the receiver and the input brightness temperature is obtained
and finally the parameters of the ground measurement system are substituted to obtain the calibration equation of the airborne radiometer. During the flight
the water body in the Hulunnao’er was selected as the reference point for external calibration target to correct the equation.
The results show that the airborne radiation brightness temperature is relatively consistent with the ground reference point (grassland) simulated brightness temperature. The comparison shows that the minimum root mean square error is 0.93 K (September 26
2018
H polarization)
and the unbiased average The minimum square root error is 0.96K (September 24
2018
V polarization)
which effectively supports the demonstration of the domestic-made L-band microwave radiometer satellite program and the subsequent development of related research work such as quantitative inversion and downscaling.
The calibration method adopted in this paper can accurately describe the complex relationship between the radiometer electrical signal and the brightness temperature. However
this study did not consider the effects of antenna port matching
aircraft pod loss
antenna pattern error
etc. During the calibration of internal noise sources on the ground
the impact of the environment and the system nonlinearity were not considered. It is necessary to take these factors into consideration in subsequent research
and the calibration accuracy can be further improved.
遥感主被动一体化微波探测仪机载综合试验机载微波辐射计定标
remote sensingactive and passive microwave detectorairborne remote sensing experimentairborne microwave radiometercalibration
Barré H M, Duesmann B, and Kerr Y H. 2008. SMOS: The mission and the system. IEEE transactions on geoscience and remote sensing, 46(3):587-593 [DOI:10.1109/TGRS.2008.916264http://dx.doi.org/10.1109/TGRS.2008.916264]
Berger M, Lopez-Baeza, Wigneron E, Calvet J P, Simmonds , Miller L, Finkenzeller H, Etcheto J, Camps, A, Font, J, Wursteisen P, Main B, Fletcher P, Kerr Y and Attema E. 2002.The EuroSTARRS campaign in support of the Soil Moisture and Ocean Salinity mission. IEEE, 2: 1152-1154 [DOI:10.1109/IGARSS.2002.1025805http://dx.doi.org/10.1109/IGARSS.2002.1025805]
Entekhabi D, Yueh S, O’Neill P E, Kellogg K H, Allen A, Bindlish R, Brown M, Chan S, Colliander A, Crow W T, Das N, De Lannoy G, Dunbar R S, Edelstein W N, Entin J K, Escobar V, Goodman S D, Jackson T J, Jai B, Johnson J, Kim E, Kim S, Kimball J, Koster R D, Leon A, McDonald K C, Moghaddam M, Mohammed P, Moran S, Njoku E G, Piepmeier J R, Reichle R, Rogez F, Shi JC, Spencer M W, Thurman S W, Tsang L, Van Zyl J, Weiss B and West R. 2014. SMAP handbook-soil moisture active passive: Mapping soil moisture and freeze/thaw from space
Entekhabi D, Reichle R H, Koster R D and Crow W T. 2010. Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11(3): 832-840 [DOI:10.1175/2010JHM1223.1http://dx.doi.org/10.1175/2010JHM1223.1]
Hardy W N, Gray K W, Love A W. 1974. An S-band radiometer design with high absolute precision. IEEE Transactions on Microwave Theory and Techniques, 22(4): 382-390 [DOI: 10.1109/TMTT.1974.1128236http://dx.doi.org/10.1109/TMTT.1974.1128236]
Hardy W N. 1973. Precision temperature reference for microwave radiometry (short papers). IEEE Transactions on Microwave Theory and Techniques, 21(3): 149-150 [DOI:10.1109/TMTT.1973.1127954http://dx.doi.org/10.1109/TMTT.1973.1127954]
Liu G F.2012.Compare and Research on Calibration Methods of Spaceborne Microwave Imaging Radiometer. Journal of Microwave, 28(S2):440-442
刘高峰.2012.星载微波成像仪辐射计定标方法比较和研究,微波学报28(S2):440-442
Merlin O, Walker J P, Chehbouni A and Kerr Y. 2008. Towards Deterministic Downscaling of SMOS Soil Moisture Using MODIS Derived Soil Evaporative Efficiency. Remote sensing of environment, 112(10): 3935-3946 [DOI: 10.1016/j.rse.2008.06.012http://dx.doi.org/10.1016/j.rse.2008.06.012]
Meissner T and Wentz F J.2004.The complex dielectric constant of pure and sea water form microwave satellite observations. IEEE Transactions on Geoscience and remote Sensing, 42(9): 1836-1849 [DOI:10.1109/TGRS.2004.831888http://dx.doi.org/10.1109/TGRS.2004.831888]
Meissner T and Wentz F J. 2012. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Transactions on Geoscience and Remote Sensing, 50(8): 3004-3026 [DOI: 10.1109/TGRS.2011.2179662http://dx.doi.org/10.1109/TGRS.2011.2179662]
Panciera R, Walker J P, Kalma J D, Kim E J, Hacker J M, Merlin O, Berger M and Skou N. 2008. The NAFE’05/CoSMOS Data Set: Toward SMOS Soil Moisture Retrieval, Downscaling, and Assimilation. IEEE transactions on geoscience and remote sensing, 46(3): 736-745 [DOI: 10.1109/TGRS.2007.915403http://dx.doi.org/10.1109/TGRS.2007.915403]
Peng S S and Li X G . 1997. Study on the calibration method of 8mm measurement radiometer. Journal of Infrared and Millimeter Waves,16(4):279-284
彭树生,李兴国.1997.8 mm测量辐射计定标方法的研究.红外与毫米波学报,16(4):279-284
Panciera R, Walker J, Ryu D, Gray D , Jackson T.2010.The Soil Moisture Active Passive Experiments(SMAPEx)Plan
Saleh K, Wigneron J P, Calvet J C, Lopez-Baeza E, Ferrazzoli P, Berger M, Wursteisen P, Simmonds L and Miller J. 2004. The EuroSTARRS Airborne Campaign in Support of the SMOS Mission: First Results over Land Surfaces. International journal of remote sensing, 25(1): 177–194. [DOI: 10.1080/0143116031000116444http://dx.doi.org/10.1080/0143116031000116444]
Ulaby F T, Moore R K, Fung A K.1988. Microwave Remote Sensing Volume I. Microwave Remote Sensing Basics and Radiometry. Science Press (FT乌拉比, RK穆尔, 冯健超.微波遥感第一卷.微波遥感基础和辐射测量学.科学出版社)
Wang Z Y, Wang J and Che T. 2017. Study on Inversion of Surface Soil Moisture from Airborne L-Band Microwave Radiometer Data. Remote Sensing Technology and Application, 37(2) :185-194
王增艳, 王建, 车涛.2017.机载L波段微波辐射计数据反演表层土壤水分研究. 遥感技术与应用, 37(2) :185-194 [DOI :10.11879/j.issn.1004-0323.2017.2.0185]
Xiao Z H, Zhang Z Y and G W.2000.A Review:The Calibration of Ground-based,Airborne and Satellite-borne Microwave Radiometers. Remote Sensing Technology and Application, 15(2): 113
肖志辉,张祖荫,郭伟.2000.地基、空基、星基微波辐射计定标技术概览,. 遥感技术与应用, 15(2): 113
Xu D Z.1998. Measuring the linearity of radiometer receivers with equal level. Aerospace Measurement Technology, 1998(01): 3-5
徐德忠.1998.用等电平测量辐射计接收机的线性度. 宇航计测技术, 1998(01): 3-5
Xie Q X,Jia L,Chen Q T, Yin Y M and Massimo M. 2021. Evaluation of microwave remote sensing soil moisture products in farming-pastoral area of Shandian river basin. National Remote Sensing Bulletin, 25(4):974-989
谢秋霞,贾立,陈琪婷,尹燕旻,Menenti Massimo.2021.闪电河流域农牧交错带微波遥感土壤水分产品评价.遥感学报,25(4): 974-989 [DOI:10.11834/jrs.20219491http://dx.doi.org/10.11834/jrs.20219491]
Zhao T J. 2018. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects.Progress in Geography, 37(2) :198-213
赵天杰.2018.被动微波反演土壤水分的L波段新发展及未来展望.地理科学进展, 37(2) :198-213 [DOI :10.18306/dlkxjz.2018.02.03]
Zribi M, Pardé M, Boutin J, Fanise P, Hauser D, Dechambre M, Kerr Y, Leduc-Leballeur M, Reverdin G, Skou N, Soøbjærg S, Albergel C, Calvet J C, Wigneron J P, Lopez-Baeza E, Rius A and Tenerelli J. 2011. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations. Sensors, 11(1): 719-742 [DOI: 10.3390/s110100719http://dx.doi.org/10.3390/s110100719]
Zhao T J, Shi J C, Xu H X, Sun Y L, Chen D Q, Cui Q, Jia L ,Huang S, Niu S D, Li X W, Yan G J, Chen L F, Liu Q H, Zhao K, Zheng X M, Zhao L M, Zheng C L, Ji D B, Xiong C, Wang T X, Li R, Pan J M, Wen J G, Mu X H, Yu C, Zheng Y M, Jiang L M, Chai L N, Lu H, Yao P P, Ma J W, Lv H S, Wu J J, Zhao W, Yang N, Guo P, Li Y X, Hu L, Geng D Y, Zhang Z Q, Hu J F and Du A P. 2021. Comprehensive remote sensing experiment of water cycle and energy balance in the shandian river basin. National Remote Sensing Bulletin, 25(4): 871-887
赵天杰, 施建成, 徐红新, 孙彦龙, 陈德清, 崔倩, 贾立, 黄硕, 牛升达, 李秀伟, 阎广建, 陈良富, 柳钦火, 赵凯, 郑兴明, 赵利民, 郑超磊, 姬大彬, 熊川, 王天星, 李睿, 潘金梅, 闻建光, 穆西晗, 余超, 郑姚闽, 蒋玲梅, 柴琳娜, 卢麾, 姚盼盼, 马建威, 吕海深, 武建军, 赵伟, 杨娜, 郭鹏, 李玉霞, 胡路, 耿德源, 张子谦, 胡建峰, 杜爱萍. 2021. 闪电河流域水循环和能量平衡遥感综合试验. 遥感学报, 25(4): 871-887 [DOI:10.11834/jrs.20219401http://dx.doi.org/10.11834/jrs.20219401]
Zhao T, Shi J, Bindlish R, Jackson T, Cosh M, Jiang L, Zhang Z and Lan H. 2015. Parametric Exponentially Correlated Surface Emission Model for L-Band Passive Microwave Soil Moisture Retrieval. Physics and Chemistry of the Earth, Parts A/B/C, 83: 65-74 [DOI: 10.1016/j.pce.2015.04.001http://dx.doi.org/10.1016/j.pce.2015.04.001]
Zhao T J, Zhang L X, JiangL M, Chen Q, Zhang Z Y and Zhang Y P. 2009. Joint inversion of soil moistureusing active and passive microwave data. Advances in Earth Science, 24(7): 769-775.
赵天杰, 张立新, 蒋玲梅, 陈权, 张志玉, 张勇攀. 2009. 利用主被动微波数据联合反演土壤水分. 地球科学进展, 24(7): 769-775
Zhao T, Shi J, Lv L, Xu H, Chen D, Cui Q, Jackson T J, Yan G, Jia L, Chen L, Zhao K, Zheng X, Zhao L, Zheng C, Ji D, Xiong C, Wang T, Li R, Pan J, Wen J, Yu C, Zheng Y, Jiang L, Chai L, Lu H, Yao P, Ma J, Lv H, Wu J, Zhao W, Yang N, Guo P, Li Y, Hu L, Geng D and Zhang Z. 2020. Soil Moisture Experiment in the Luan River Supporting New Satellite Mission Opportunities. Remote Sensing of Environment, 240: 111680. [DOI: 10.1016/j.rse.2020.111680http://dx.doi.org/10.1016/j.rse.2020.111680]
相关作者
相关机构