气溶胶定量遥感的机器学习方法综述
Review of machine learning methods for aerosol quantitative remote sensing
- 2021年25卷第11期 页码:2220-2233
纸质出版日期: 2021-11-07
DOI: 10.11834/jrs.20210451
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-11-07 ,
扫 描 看 全 文
陈兴峰,郑逢杰,郭丁,王莉莉,赵利民,李家国,李雷,张玉环,张凯南,奚萌,李凯涛.2021.气溶胶定量遥感的机器学习方法综述.遥感学报,25(11): 2220-2233
Chen X F,Zheng F J,Guo D,Wang L L,Zhao L M,Li J G,Li L,Zhang Y H,Zhang K N, Xi M and Li K T. 2021. Review of machine learning methods for aerosol quantitative remote sensing. National Remote Sensing Bulletin, 25(11):2220-2233
机器学习方法近年来取得突破进展,其遥感应用从目标识别和地物分类领域,发展到定量化反演的多个领域。气溶胶定量遥感因其机理复杂,反演参数的种类和精度受到限制,机器学习为气溶胶遥感带来了新的研究和应用技术手段。本文汇总现有研究进展将气溶胶机器学习方法归纳为卫星遥感反演气溶胶光学厚度AOD(Aerosol Optical Depth)、卫星遥感反演其他气溶胶参数、卫星遥感反演颗粒物浓度(PM
x
)、地基气溶胶遥感4类。结合作者研究工作,通过分析讨论,归纳机器学习用于气溶胶定量遥感的条件为:(1)物理模型无法使用;(2)已有模型卫星产品精度低;(3)已有模型精度高但计算速度低。从应用的角度来说,可以借助于更多的具有相关性的输入信息,发挥机器学习在反演产品种类、反演精度、计算效率等方面的优势;而对定量遥感来说,应该同时重视挖掘遥感数据本身的信息来提高反演能力,并通过误差分析等手段反馈对遥感机理的理解,使机器学习与遥感机理研究相互促进。
Machine learning methods have made breakthroughs in recent years
and their remote sensing applications have developed from remote sensing image recognition and classification to many fields in quantitative retrievals. Owing to their complicated mechanism in quantitative aerosol remote sensing
the types and accuracy of retrieved parameters are limited. Machine learning introduces new research and application techniques to aerosol remote sensing. Existing aerosol retrieval machine learning methods are summarized into four categories: satellite aerosol optical depth remote sensing
other aerosol parameters’ satellite remote sensing
particulate matter concentration
and ground-based aerosol remote sensing. In consideration of the authors’ research
through analysis and discussion
the conditions for machine learning to be used for aerosol quantitative remote sensing are summarized as follows: (1) Physical models could not be utilized. (2) Existing models have low accuracy. (3) Existing models have low computational efficiency. From the perspective of application
relevant inputs can be used to utilize machine learning to improve retrieved product types
retrieval accuracy
and calculation efficiency. For the quantitative remote sensing research field
how to mine information from remote sensing data should also be paid attention to improve the retrieval capability. Machine learning can also feedback the understanding of remote sensing mechanisms through error analysis
such that machine learning and remote sensing mechanism research can promote each other.
气溶胶定量遥感反演机器学习深度学习
aerosolquantitative remote sensingretrievalmachine learningdeep learning
Ahmad M, Alam K, Tariq S, Anwar S, Nasir J and Mansha M. 2019. Estimating fine particulate concentration using a combined approach of linear regression and artificial neural network. Atmospheric Environment, 219: 117050 [DOI: 10.1016/j.atmosenv.2019.117050http://dx.doi.org/10.1016/j.atmosenv.2019.117050]
Berdnik V V and Loiko V A. 2016. Neural networks for aerosol particles characterization. Journal of Quantitative Spectroscopy and Radiative Transfer, 184: 135-145 [DOI: 10.1016/j.jqsrt.2016.06.034http://dx.doi.org/10.1016/j.jqsrt.2016.06.034]
Cazorla A, Shields J E, Karr M E, Olmo F J, Burden A and Alados-Arboledas L. 2009. Technical Note: determination of aerosol optical properties by a calibrated sky imager. Atmospheric Chemistry and Physics, 9(17): 6417-6427 [DOI: 10.5194/acp-9-6417-2009http://dx.doi.org/10.5194/acp-9-6417-2009]
Chen G B, Li S S, Knibbs L D, Hamm N A S, Cao W, Li T T, Guo J P, Ren H Y, Abramson M J and Guo Y M. 2018b. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Science of the Total Environment, 636: 52-60 [DOI: 10.1016/j.scitotenv.2018.04.251http://dx.doi.org/10.1016/j.scitotenv.2018.04.251]
Chen X F, de Leeuw G, Arola A, Liu S M, Liu Y, Li Z Q and Zhang K N. 2020. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: artificial neural network method. Remote Sensing of Environment, 249: 112006 [DOI: 10.1016/j.rse.2020.112006http://dx.doi.org/10.1016/j.rse.2020.112006]
Chen X F, Li Z Q, Zhao S S, Yang L K, Ma Y, Liu L, Li D H, Qie L L and Xing J. 2018a. Using the Gaofen-4 geostationary satellite to retrieve aerosols with high spatiotemporal resolution. Journal of Applied Remote Sensing, 12(4): 042606 [DOI: 10.1117/1.JRS.12.042606http://dx.doi.org/10.1117/1.JRS.12.042606]
Cheng T H, Gu X F, Xie D H, Li Z Q, Yu T and Chen X F. 2011. Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements. Remote Sensing of Environment, 115(7): 1643-1652 [DOI: 10.1016/j.rse.2011.02.020http://dx.doi.org/10.1016/j.rse.2011.02.020]
Di Noia A, Hasekamp O P, van Harten G, Rietjens J H H, Smit J M, Snik F, Henzing J S, de Boer J, Keller C U and Volten H. 2015. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations. Atmospheric Measurement Techniques, 8(1): 281-299 [DOI: 10.5194/amt-8-281-2015http://dx.doi.org/10.5194/amt-8-281-2015]
Di Noia A, Hasekamp O P, Wu L H, van Diedenhoven B, Cairns B and Yorks J E. 2017. Combined neural network/Phillips-Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter. Atmospheric Measurement Techniques, 10(11): 4235-4252 [DOI: 10.5194/amt-10-4235-2017http://dx.doi.org/10.5194/amt-10-4235-2017]
Di Noia A and Hasekamp O P. 2018. Neural networks and support vector machines and their application to aerosol and cloud remote sensing: a review/ (/Kokhanovsky A, ed. Springer Series in Light Scattering. [s.l.]: Springer: 279-329 [DOI: 10.1007/978-3-319-70796-9_4http://dx.doi.org/10.1007/978-3-319-70796-9_4])
Dubovik O, Herman M, Holdak A, Lapyonok T, Tanré D, Deuzé J L, Ducos F, Sinyuk A and Lopatin A. 2011. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmospheric Measurement Techniques, 4(5): 975-1018 [DOI: 10.5194/amt-4-975-2011http://dx.doi.org/10.5194/amt-4-975-2011]
Fan C, Fu G L, Di Noia A, Smit M, Rietjens J H H, Ferrare R A, Burton S, Li Z Q and Hasekamp O P. 2019. Use of a neural network-based ocean body radiative transfer model for aerosol retrievals from multi-angle polarimetric measurements. Remote Sensing, 11(23): 2877 [DOI: 10.3390/rs11232877http://dx.doi.org/10.3390/rs11232877]
Fougnie B, Marbach T, Lacan A, Lang R, Schlüssel P, Poli G, Munro R and Couto A B. 2018. The multi-viewing multi-channel multi-polarisation imager-overview of the 3MI polarimetric mission for aerosol and cloud characterization. Journal of Quantitative Spectroscopy and Radiative Transfer, 219: 23-32 [DOI: 10.1016/j.jqsrt.2018.07.008http://dx.doi.org/10.1016/j.jqsrt.2018.07.008]
Grgurić S, Križan J, Gašparac G, Antonić O, Špirić Z, Mamouri R E, Christodoulou A, Nisantzi A, Agapiou A, Themistocleous K, Fedra K, Panayiotou C and Hadjimitsis D. 2014. Relationship between MODIS based aerosol optical depth and PM10 over Croatia. Central European Journal of Geosciences, 6(1): 2-16 [DOI: 10.2478/s13533-012-0135-6http://dx.doi.org/10.2478/s13533-012-0135-6]
Guo H, Gu X F, Xie Y, Yu T, Gao H L, Wei X Q and Liu Q Y. 2014. Evaluation of four dark object atmospheric correction methods based on ZY-3 CCD data. Spectroscopy and Spectral Analysis, 34(8): 2203-2207
郭红, 顾行发, 谢勇, 余涛, 高海亮, 魏香琴, 刘其悦. 2014. 基于ZY-3 CCD相机数据的暗像元大气校正方法分析与评价. 光谱学与光谱分析, 34(8): 2203-2207) [DOI: 10.3964/j.issn.1000-0593(201408-2203-05http://dx.doi.org/10.3964/j.issn.1000-0593(2014)08-2203-05]
Han H J and Sohn B J. 2013. Retrieving Asian dust AOT and height from hyperspectral sounder measurements: an artificial neural network approach. Journal of Geophysical Research: Atmospheres, 118(2): 837-845 [DOI: 10.1002/jgrd.50170http://dx.doi.org/10.1002/jgrd.50170]
Hsu N C, Jeong M J, Bettenhausen C, Sayer A M, Hansell R, Seftor C S, Huang J and Tsay S C. 2013. Enhanced deep blue aerosol retrieval algorithm: the second generation. Journal of Geophysical Research: Atmospheres, 118(16): 9296-9315 [DOI: 10.1002/jgrd.50712http://dx.doi.org/10.1002/jgrd.50712]
Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Han Y M, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z S, Szidat S, Baltensperger U, Haddad I E and Prévôt A S H. 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521): 218-222 [DOI: 10.1038/nature13774http://dx.doi.org/10.1038/nature13774]
Huttunen J, Kokkola H, Mielonen T, Mononen M E J, Lipponen A, Reunanen J, Lindfors A V, Mikkonen S, Lehtinen K E J, Kouremeti N, Bais A, Niska H and Arola A. 2016. Retrieval of aerosol optical depth from surface solar radiation measurements-using machine learning algorithms, non-linear regression and a radiative-transfer-based look-up table. Atmospheric Chemistry and Physics, 16(13): 8181-8191 [DOI: 10.5194/acp-16-8181-2016http://dx.doi.org/10.5194/acp-16-8181-2016]
IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY: Cambridge University Press
Jamet C, Moulin C and Thiria S. 2004. Monitoring aerosol optical properties over the Mediterranean from SeaWiFS images using a neural network inversion. Geophysical Research Letters, 31(13): L13107 [DOI: 10.1029/2004GL019951http://dx.doi.org/10.1029/2004GL019951]
Kahn R A and Gaitley B J. 2015. An analysis of global aerosol type as retrieved by MISR. Journal of Geophysical Research: Atmospheres, 120(9): 4248-4281 [DOI: 10.1002/2015JD023322http://dx.doi.org/10.1002/2015JD023322]
Kaufman Y J, Tanré D and Boucher O. 2002. A satellite view of aerosols in the climate system. Nature, 419(6903): 215-223 [DOI: 10.1038/nature01091http://dx.doi.org/10.1038/nature01091]
Kellenberger B, Marcos D and Tuia D. 2018. Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning. Remote Sensing of Environment, 216: 139-153 [DOI: 10.1016/j.rse.2018.06.028http://dx.doi.org/10.1016/j.rse.2018.06.028]
Kolios S and Hatzianastassiou N. 2019. Quantitative aerosol optical depth detection during dust outbreaks from meteosat imagery using an artificial neural network model. Remote Sensing, 11(9): 1022 [DOI: 10.3390/rs11091022http://dx.doi.org/10.3390/rs11091022]
Lamb K D. 2019. Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning. Atmospheric Measurement Techniques, 12(7): 3885-3906 [DOI: 10.5194/amt-12-3885-2019http://dx.doi.org/10.5194/amt-12-3885-2019]
Lanzaco B L, Olcese L E, Palancar G G and Toselli B M. 2017. An improved aerosol optical depth map based on machine-learning and MODIS data: development and application in South America. Aerosol and Air Quality Research, 17(6): 1623-1636 [DOI: 10.4209/aaqr.2016.11.0484http://dx.doi.org/10.4209/aaqr.2016.11.0484]
Lary D J, Remer L A, MacNeill D, Roscoe B and Paradise S. 2009. Machine learning and bias correction of MODIS aerosol optical depth. IEEE Geoscience and Remote Sensing Letters, 6(4): 694-698 [DOI: 10.1109/LGRS.2009.2023605http://dx.doi.org/10.1109/LGRS.2009.2023605]
Leśkiewicz M, Kaliszewski M, Włodarski M, Młyńczak J, Mierczyk Z and Kopczyński K. 2018. Improved real-time bio-aerosol classification using artificial neural networks. Atmospheric Measurement Techniques, 11(11): 6259-6270 [DOI: 10.5194/amt-11-6259-2018http://dx.doi.org/10.5194/amt-11-6259-2018]
Levy R C, Mattoo S, Munchak L A, Remer L A, Sayer A M, Patadia F and Hsu N C. 2013. The collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11): 2989-3034 [DOI: 10.5194/amt-6-2989-2013http://dx.doi.org/10.5194/amt-6-2989-2013]
Levy R C, Remer L A, Kleidman R G, Mattoo S, Ichoku C, Kahn R and Eck T F. 2010. Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21): 10399-10420 [DOI: 10.5194/acp-10-10399-2010http://dx.doi.org/10.5194/acp-10-10399-2010]
Li L F. 2020. A robust deep learning approach for spatiotemporal estimation of satellite AOD and PM2.5. Remote Sensing, 12(2): 264 [DOI: 10.3390/rs12020264http://dx.doi.org/10.3390/rs12020264]
Li X T and Zhang X D. 2019. Predicting ground-level PM2.5 concentrations in the Beijing-Tianjin-Hebei region: a hybrid remote sensing and machine learning approach. Environmental Pollution, 249: 735-749 [DOI: 10.1016/j.envpol.2019.03.068http://dx.doi.org/10.1016/j.envpol.2019.03.068]
Li Z Q, Li D H, Li K T, Xu H, Chen X F, Chen C, Xie Y S, Li L, Li L, Li W, Lyu Y, Qie L L, Zhang Y and Gu X F. 2015. Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements.Journal of Remote Sensing, 19(3):495-519
李正强, 李东辉, 李凯涛, 许华, 陈兴峰, 陈澄, 谢一凇, 李莉, 李雷, 李伟, 吕阳, 伽丽丽, 张莹, 顾行发. 2015. 扩展多波长偏振测量的太阳—天空辐射计观测网. 遥感学报. 19(03):495-519[DOI:10.11834/jrs.20154129http://dx.doi.org/10.11834/jrs.20154129]
Li Z Q, Zhang Y, Shao J, Li B S, Hong J, Liu D, Li D H, Wei P, Li W, Li L, Zhang F, Guo J, Deng Q, Wang B X, Cui C L, Zhang W C, Wang Z Z, Lv Y, Xu H, Chen X F, Li L and Qie L. 2016. Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: method validation using ground-based measurements. Remote Sensing of Environment, 173: 59-68 [DOI: 10.1016/j.rse.2015.11.019http://dx.doi.org/10.1016/j.rse.2015.11.019]
Liu X T, Li F, Tan H B, Deng X J, Mai B R, Deng T, Li T Y and Zou Y. 2014. Analysis of sensitivity of monitored ground PM2.5 concentrations based on satellite remote sensing data. China Environmental Science, 34(7): 1649-1659
刘显通, 李菲, 谭浩波, 邓雪娇, 麦博儒, 邓涛, 李婷苑, 邹宇. 2014. 基于卫星遥感资料监测地面细颗粒物的敏感性分析. 中国环境科学, 34(7): 1649-1659
Liu Z, Mortier A, Li Z Q, Hou W Z, Goloub P, Lv Y, Chen X F, Li D H, Li K T and Xie Y S. 2017. Improving daytime planetary boundary layer height determination from CALIOP: validation based on ground-based lidar station. Advances in Meteorology, 2017: 5759074 [DOI: 10.1155/2017/5759074http://dx.doi.org/10.1155/2017/5759074]
Maxwell A E, Warner T A and Fang F. 2018. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39(9): 2784-2817 [DOI: 10.1080/01431161.2018.1433343http://dx.doi.org/10.1080/01431161.2018.1433343]
Nanda S, de Graaf M, Veefkind J P, ter Linden M, Sneep M, de Haan J and Levelt P F. 2019. A neural network radiative transfer model approach applied to the Tropospheric Monitoring Instrument aerosol height algorithm. Atmospheric Measurement Techniques, 12(12): 6619-6634 [DOI: 10.5194/amt-12-6619-2019http://dx.doi.org/10.5194/amt-12-6619-2019]
Niang A, Badran F, Moulin C, Crépon M and Thiria S. 2006. Retrieval of aerosol type and optical thickness over the Mediterranean from SeaWiFS images using an automatic neural classification method. Remote sensing of Environment, 100(1): 82-94 [DOI: 10.1016/j.rse.2005.10.005http://dx.doi.org/10.1016/j.rse.2005.10.005]
Nicolae D, Vasilescu J, Talianu C, Binietoglou I, Nicolae V, Andrei S and Antonescu B. 2018. A neural network aerosol-typing algorithm based on lidar data. Atmospheric Chemistry and Physics, 18(19): 14511-14537 [DOI: 10.5194/acp-18-14511-2018http://dx.doi.org/10.5194/acp-18-14511-2018]
Pak U, Ma J, Ryu U, Ryom K, Juhyok U, Pak K and Pak C. 2020. Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: a case study of Beijing, China. Science of the Total Environment, 699: 133561 [DOI: 10.1016/j.scitotenv.2019.07.367http://dx.doi.org/10.1016/j.scitotenv.2019.07.367]
Pope C A III, Burnett R T, Thun M J, Calle E E, Krewski D, Ito K and Thurston G D. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association, 287(9): 1132-1141 [DOI: 10.1001/jama.287.9.1132http://dx.doi.org/10.1001/jama.287.9.1132]
Radosavljevic V, Vucetic S and Obradovic Z. 2010. A data-mining technique for aerosol retrieval across multiple accuracy measures. IEEE Geoscience and Remote Sensing Letters, 7(2): 411-415 [DOI: 10.1109/LGRS.2009.2037720http://dx.doi.org/10.1109/LGRS.2009.2037720]
Ristovski K, Vucetic S and Obradovic Z. 2012. Uncertainty analysis of neural-network-based aerosol retrieval. IEEE Transactions on Geoscience and Remote Sensing, 50(2): 409-414 [DOI: 10.1109/TGRS.2011.2166120http://dx.doi.org/10.1109/TGRS.2011.2166120]
Shen H F, Li T W, Yuan Q Q and Zhang L P. 2018. Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks. Journal of Geophysical Research: Atmospheres 123(24): 13875-13886 [DOI: 10.1029/2018JD028759http://dx.doi.org/10.1029/2018JD028759]
Sogacheva L, de Leeuw G, Rodriguez E, Kolmonen P, Georgoulias A K, Alexandri G, Kourtidis K, Proestakis E, Marinou E, Amiridis V, Xue Y and van der A R J. 2018. Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations. Part 1: ATSR (1995-2011) and MODIS C6.1 (2000-2017). Atmospheric Chemistry and Physics, 18(22): 11389-11407 [DOI: 10.5194/acp-18-11389-2018http://dx.doi.org/10.5194/acp-18-11389-2018]
Sun L, Yu H Y, Fu Q Y, Wang J, Tian X P and Mi X T. 2016. Aerosol optical depth retrieval and atmospheric correction application for GF-1 PMS supported by land surface reflectance data. Journal of Remote Sensing, 20(2): 216-228
孙林, 于会泳, 傅俏燕, 王健, 田信鹏, 米雪婷. 2016. 地表反射率产品支持的GF-1 PMS气溶胶光学厚度反演及大气校正. 遥感学报, 20(2): 216-228 [DOI: 10.11834/jrs.20165052http://dx.doi.org/10.11834/jrs.20165052]
Sun Y B, Zeng Q L, Geng B, Lin X W, Sude B and Chen L F. 2019. Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing. IEEE Geoscience and Remote Sensing Letters, 16(9): 1343-1347 [DOI: 10.1109/LGRS.2019.2900270http://dx.doi.org/10.1109/LGRS.2019.2900270]
Tao M H, Li R, Wang L L, Lan F, Wang Z F, Tao J H, Che H Z, Wang L C and Chen L F. 2020. A critical view of long-term AVHRR aerosol data record in China: retrieval frequency and heavy pollution. Atmospheric Environment, 223: 117246 [DOI: 10.1016/j.atmosenv.2019.117246http://dx.doi.org/10.1016/j.atmosenv.2019.117246]
Taylor M, Kazadzis S, Tsekeri A, Gkikas A and Amiridis V. 2014. Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak. Atmospheric Measurement Techniques, 7(9): 3151-3175 [DOI: 10.5194/amt-7-3151-2014http://dx.doi.org/10.5194/amt-7-3151-2014]
van Donkelaar A, Martin R V, Brauer M, Kahn R, Levy R, Verduzco C and Villeneuve P J. 2010. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environmental Health Perspectives, 118(6): 847-855 [DOI: 10.1289/ehp.0901623http://dx.doi.org/10.1289/ehp.0901623]
van Harten G, de Boer J, Rietjens J H H, Di Noia A, Snik F, Volten H, Smit J M, Hasekamp O P, Henzing J S and Keller C U. 2014. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument. Atmospheric Measurement Techniques, 7(12): 4341-4351 [DOI: 10.5194/amt-7-4341-2014http://dx.doi.org/10.5194/amt-7-4341-2014]
Vermote E F, Tanré D, Deuzé J L, Herman M and Morcrette J J. 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3): 675-686 [DOI: 10.1109/36.581987http://dx.doi.org/10.1109/36.581987]
Vucetic S, Han B, Mi W, Li Z and Obradovic Z. 2008. A data-mining approach for the validation of aerosol retrievals. IEEE Geoscience and Remote Sensing Letters, 5(1): 113-117 [DOI: 10.1109/LGRS.2007.912725http://dx.doi.org/10.1109/LGRS.2007.912725]
Wang W L, Zhao S L, Jiao L M, Taylor M, Zhang B E, Xu G and Hou H B. 2019. Estimation of PM2.5 concentrations in China using a spatial back propagation neural network. Scientific Reports, 9: 13788 [DOI: 10.1038/s41598-019-50177-1http://dx.doi.org/10.1038/s41598-019-50177-1]
Wang Z T, Li Q, Chen L F, Wang Z F, Li S S and Jiang Z. 2011. The retrieval of fine and coarse aerosol from MODIS. Spectroscopy and Spectral Analysis, 31(10): 2809-2813
王中挺, 厉青, 陈良富, 王子峰, 李莘莘, 蒋哲. 2011. 从MODIS数据反演粗细粒子气溶胶. 光谱学与光谱分析, 31(10): 2809-2813) [DOI: 10.3964/j.issn.1000-0593(201110-2809-05]
Wei J, Huang W, Li Z Q, Xue W H, Peng Y R, Sun L and Cribb M. 2019. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sensing of Environment, 231: 111221 [DOI: 10.1016/j.rse.2019.111221http://dx.doi.org/10.1016/j.rse.2019.111221]
Wu D, Tie X X, Li C C, Ying Z M, Lau A K H, Huang J, Deng X J and Bi X Y. 2005. An extremely low visibility event over the Guangzhou region: a case study. Atmospheric Environment, 39(35): 6568-6577 [DOI: 10.1016/j.atmosenv.2005.07.061http://dx.doi.org/10.1016/j.atmosenv.2005.07.061]
Wu J S, Yao F, Li W F and Si M L. 2016. VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing–Tianjin–Hebei: a spatiotemporal statistical model. Remote Sensing of Environment, 184: 316-328 [DOI: 10.1016/j.rse.2016.07.015http://dx.doi.org/10.1016/j.rse.2016.07.015]
Xia X G, Che H Z, Shi H R, Chen H B, Zhang X Y, Wang P C, Goloub P and Holben B. 2021. Advances in sunphotometer-measured aerosol optical properties and related topics in China: impetus and perspectives. Atmospheric Research, 249: 105286 [DOI: 10.1016/j.atmosres.2020.105286http://dx.doi.org/10.1016/j.atmosres.2020.105286]
Xiao F, Wong M S, Lee K H, Campbell J R and Shea Y K. 2015. Retrieval of dust storm aerosols using an integrated Neural Network model. Computers and Geosciences, 85: 104-114 [DOI: 10.1016/j.cageo.2015.02.016http://dx.doi.org/10.1016/j.cageo.2015.02.016]
Yahi H, Marticorena B, Thiria S, Chatenet B, Schmechtig C, Rajot J L and Crepon M. 2013. Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology. Journal of Geophysical Research: Atmospheres, 118(23): 13265-13281 [DOI: 10.1002/2013jd019465http://dx.doi.org/10.1002/2013jd019465]
Yan X, Li Z Q, Shi W Z, Luo N N, Wu T X and Zhao W J. 2017. An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness, part 1: algorithm development. Remote Sensing of Environment, 192: 87-97 [DOI: 10.1016/j.rse.2017.02.005http://dx.doi.org/10.1016/j.rse.2017.02.005]
Yuan Q Q, Shen H F, Li T W, Li Z W, Li S W, Jiang Y, Xu H Z, Tan W W, Yang Q Q, Wang J W, Gao J H and Zhang L P. 2020. Deep learning in environmental remote sensing: achievements and challenges. Remote Sensing of Environment, 241: 111716 [DOI: 10.1016/j.rse.2020.111716http://dx.doi.org/10.1016/j.rse.2020.111716]
Zamani Joharestani M, Cao C X, Ni X L, Bashir B and Talebiesfandarani S. 2019. PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere, 10(7): 373 [DOI: 10.3390/atmos10070373http://dx.doi.org/10.3390/atmos10070373]
Zang L, Mao F Y, Guo J P, Gong W, Wang W and Pan Z X. 2018. Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China. Environmental Pollution, 241: 654-663 [DOI: 10.1016/j.envpol.2018.05.100http://dx.doi.org/10.1016/j.envpol.2018.05.100]
Zang L, Mao F Y, Guo J P, Wang W, Pan Z X, Shen H F, Zhu B and Wang Z M. 2019. Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth. Science of the Total Environment, 658: 1256-1264 [DOI: 10.1016/j.scitotenv.2018.12.297http://dx.doi.org/10.1016/j.scitotenv.2018.12.297]
Zhang K N, de Leeuw G, Yang Z Q, Chen X F, Su X L and Jiao J S. 2019. Estimating spatio-temporal variations of PM2.5 concentrations using VIIRS-Derived AOD in the Guanzhong Basin, China. Remote Sensing, 11(22): 2679 [DOI: 10.3390/rs11222679http://dx.doi.org/10.3390/rs11222679]
Zhang K N, de Leeuw G, Yang Z Q, Chen X F and Jiao J S. 2020. The impacts of the COVID-19 lockdown on air quality in the Guanzhong Basin, China. Remote Sensing, 12(18): 3042 [DOI: 10.3390/rs12183042http://dx.doi.org/10.3390/rs12183042]
Zhang Y, Li Z Q, Qie L, Zhang Y, Liu Z H, Chen X F, Hou W Z, Li K T, Li D H and Xu H. 2016. Retrieval of aerosol fine-mode fraction from intensity and polarization measurements by PARASOL over East Asia. Remote Sensing, 8(5): 417 [DOI: 10.3390/rs8050417http://dx.doi.org/10.3390/rs8050417]
Zheng Z Y, Chen L F, Zheng J Y, Zhong L J and Liu Q H. 2011. Application of retrieved high-resolution AOD in regional PM monitoring in the Pearl River Delta and Hong Kong region. Acta Scientiae Circumstantiae, 31(6): 1154-1161
郑卓云, 陈良富, 郑君瑜, 钟流举, 刘启汉. 2011. 高分辨率气溶胶光学厚度在珠三角及香港地区区域颗粒物监测中的应用研究. 环境科学学报, 31(6): 1154-1161
相关作者
相关机构