日食对中国大气边界层热力状态的影响分析
Effects of the solar eclipse on atmospheric boundary layer thermodynamics in China
- 2023年27卷第2期 页码:420-429
纸质出版日期: 2023-02-07
DOI: 10.11834/jrs.20210465
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-02-07 ,
扫 描 看 全 文
雷连发,王振会,马盈盈,李成伟,刘晓璐,曹江平,白水成,朱磊,卢建平.2023.日食对中国大气边界层热力状态的影响分析.遥感学报,27(2): 420-429
Lei L F,Wang Z H,Ma Y Y,Li C W,Liu X L,Cao J P,Bai S C,Zhu L and Lu J P. 2023. Effects of the solar eclipse on atmospheric boundary layer thermodynamics in China. National Remote Sensing Bulletin, 27(2):420-429
地球的能量主要来源于太阳,太阳的辐射变化对地球大气边界层有着潜在的影响。日食过程中太阳被遮挡减少了到达地球的热辐射能量,大气热力状态被改变,为研究大气层热力状态的变化提供了一个好的机会。2020年6月21日,在中国境内出现了一次日环食,除日环食带以外中国其他地区都可见到日偏食。为了研究日食对边界层大气热力状态的影响,本文分析了西安、遵义、南宁和宜宾4个不同地区的微波辐射计实时连续观测的大气温湿度廓线数据,研究日食期间不同日面遮挡程度对不同边界层高度上大气热力状态的变化及其受天气条件的影响。这4个站点月球对太阳的遮挡比例都不相同,其中宜宾处在日环食带上遮挡最多。实验结果表明,日食期间大气边界层温湿度受到日食的影响较为明显。从日食开始到最大时刻由于到达地球的太阳辐射能减少,边界层大气温度也开始降低,在日食从最大时刻到结束期间,从太阳到达地球的辐射能量逐渐增大,边界层温度开始上升,日食过程中相对湿度变化与温度相反。4个站点温度变化最大约4℃,相对湿度变化超过10%,水汽密度没有明显变化,各个高度层温湿度变化明显滞后日食过程约15—20 min。日食过程中,月球对日面遮挡越多,日食对边界层大气温湿度廓线的影响也越明显。日食对边界层大气温湿度的影响随着高度的增加逐渐减弱,日面被遮挡的面积越少日食对边界层影响的最大高度也就越低。由于云和雨对太阳辐射的衰减,日食对边界层大气温湿廓线的影响将会减弱。
Earth energy comes from solar radiation
and solar radiation has a potential impact on the atmospheric boundary layer. During the solar eclipse
the solar disk is covered by the moon
and the solar radiation is reduced to reach the Earth
causing cooling in the surface layers of the atmosphere. Solar eclipse provides an ideal condition for studying the response of the atmosphere. On June 21
2020
an annular eclipse occurred in China
and the partial solar eclipse can be seen except for the annular eclipse region. This solar eclipse provides a good opportunity for us to study the variation of the atmospheric thermodynamics. The most important parameter of thermodynamics during solar eclipse is the temperature in the different altitudes in the boundary layer. In this paper
to study the effect of the solar eclipse on atmospheric thermodynamics in the boundary layer
the atmospheric temperature and humidity profiles observed by the Ground-based multichannel Microwave Radiometer (GMR) in Xi’an
Zunyi
Nanning and Yibin
China. The GMR has high spatial resolution and high sensitivity and it is usually used to observe and study the atmospheric temperature and humidity profiles. Therefore
the variation of the atmospheric thermodynamics was studied at different regions and weather conditions by using the GMR during the solar eclipse. At these observation stations
the proportion of the sun covered by the moon is different; the annular eclipse can be observed in Yibin
and the covered proportion is maximum. This paper compared the results of the experiment and the observation results showed that the temperature and humidity profiles of the boundary layer had obviously changed. From the beginning of the solar eclipse to the maximum of the solar eclipse
the temperature of the boundary layer began to decrease because the solar radiation reaching the Earth was reduced. During the period from the maximum solar eclipse to the end of the solar eclipse
the radiation energy from the sun to the earth gradually increased
the temperature of the boundary layer began to rise
the variation in relative humidity was the opposite
the maximum variation in the temperature was approximately 4 ℃
the relative humidity was more than 10%
and the water vapor density profile had no obvious variation at these stations. The variation in the temperature and humidity lagged behind by approximately 15 to 20 minutes. The effect of the solar eclipse decreases with increasing height for the temperature and humidity in the boundary layer. In the process of the solar eclipse
the greater the solar disk is covered by the moon
the more obvious the effect of the solar eclipse on the temperature and humidity in the boundary layer. Due to the attenuation of solar radiation by clouds and rain
the influence of solar eclipses on the atmospheric temperature and humidity in the boundary layer will be weakened. This observation experiment had provided fine-scale variations of the atmospheric parameters both in time and height by using the GMR during the solar eclipse. These results may have important implications in understanding the response of atmosphere to the thermodynamics perturbations caused by the solar eclipse.
遥感日食微波辐射计边界层温度廓线湿度廓线
remote sensingthe solar eclipsemicrowave radiometerthe boundary layertemperature profilerelative humidity profile
Ahrens D, Iziomon M G, Jaeger L, Matzarakis A and Mayer H. 2001. Impacts of the solar eclipse of 11 August 1999 on routinely recorded meteorological and air quality data in South-West Germany. Meteorologische Zeitschrift, 10(3): 215-223 [DOI: 10.1127/0941-2948/2001/0010-0215http://dx.doi.org/10.1127/0941-2948/2001/0010-0215]
Aplin K L and Harrison R G. 2003. Meteorological effects of the eclipse of 11 August 1999 in cloudy and clear conditions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 459(2030): 353-371 [DOI: 10.1098/rspa.2002.1042http://dx.doi.org/10.1098/rspa.2002.1042]
Bhat G S and Jagannathan R. 2012. Moisture depletion in the surface layer in response to an annular solar eclipse. Journal of Atmospheric and Solar-Terrestrial Physics, 80: 60-67 [DOI: 10.1016/j.jastp.2012.02.025http://dx.doi.org/10.1016/j.jastp.2012.02.025]
Bird R E, Hulstrom R L. 1981. A simplified clear-sky model for the direct and diffuse insolation on horizontal surfaces[R]. Golden, Colorado: Solar Energy Research Institute, Technical Report No. SERI/TR-642-761.
Chung Y S, Kim H S and Choo S H. 2010. The solar eclipse and associated atmospheric variations observed in South Korea on 22 July 2009. Air Quality, Atmosphere and Health, 3(3): 125-130 [DOI: 10.1007/s11869-009-0060-0http://dx.doi.org/10.1007/s11869-009-0060-0]
Founda D, Lykoudis S, Psiloglou B E, Petrakis M and Zerefos C. 2009. Observations of the atmospheric surface layer parameters during the total solar eclipse of March 29th, in Greece. Meteorologische Zeitschrift, 18(5): 489-494 [DOI: 10.1127/0941-2948/2009/0406http://dx.doi.org/10.1127/0941-2948/2009/0406]
Han Y and Westwater E R. 2000. Analysis and improvement of tipping calibration for ground-based microwave radiometers. IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1260-1276 [DOI: 10.1109/36.843018http://dx.doi.org/10.1109/36.843018]
Kadygrov E N, Miller E A and Troitsky A V. 2012. Study of atmospheric boundary layer thermodynamics during total solar eclipse on the basis of microwave radiometers data//2012 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad). Rome: IEEE: 1-4 [DOI: 10.1109/MicroRad.2012.6185246http://dx.doi.org/10.1109/MicroRad.2012.6185246]
Lei L F, Lu J P, Zhu L and Wu H. 2014. Atmospheric remote sensing using multi-channel ground-based microwave radiometer. Journal of Remote Sensing, 18(1): 180-191
雷连发, 卢建平, 朱磊, 吴皓. 2014. 多通道地基微波辐射计大气遥感. 遥感学报, 18(1): 180-191 [DOI: 10.11834/jrs.20133013http://dx.doi.org/10.11834/jrs.20133013]
Liu X L, Liu D S, Guo L J, Lei L F and Feng J Y. 2019. The observational precision of domestic MWP967KV ground-based microwave radiometer. Journal of Applied Meteorological Science, 30(6): 731-744
刘晓璐, 刘东升, 郭丽君, 雷连发, 冯金燕. 2019. 国产MWP967KV型地基微波辐射计探测精度. 应用气象学报, 30(6): 731-744 [DOI: 10.11898/1001-7313.20190609http://dx.doi.org/10.11898/1001-7313.20190609]
Lu J, Chen S L, Bu C W and Liu Y X. 2011. Analysis of urban thermal environment change characteristics during the total solar eclipse. Spectroscopy and Spectral Analysis, 31(4): 911-914
卢军, 陈士凌, 卜萃文, 刘雨曦. 2011. 日全食下城市热环境的变化特征分析. 光谱学与光谱分析, 31(4): 911-914 [DOI: 10.3964/j.issn.1000-0593(2011)04-0911-04http://dx.doi.org/10.3964/j.issn.1000-0593(2011)04-0911-04]
Ma D L, Chen Z H and Xiang H. 2011. Change characteristics of meteorological factors in Wuhan during the total solar eclipse in cloudy situation. Scientia Meteorologica Sinica, 31(1): 54-60
马德栗, 陈正洪, 向华. 2011. 日全食期间武汉市气象要素变化特征. 气象科学, 31(1): 54-60 [DOI: 10.3969/j.issn.1009-0827.2011.01.008http://dx.doi.org/10.3969/j.issn.1009-0827.2011.01.008]
Reda I. 2015. Solar eclipse monitoring for solar energy applications. Solar Energy, 112: 339-350 [DOI: 10.1016/j.solener.2014.12.010http://dx.doi.org/10.1016/j.solener.2014.12.010]
Szałowski K. 2002. The effect of the solar eclipse on the air temperature near the ground. Journal of Atmospheric and Solar-Terrestrial Physics, 64(15): 1589-1600 [DOI: 10.1016/S1364-6826(02)00134-7http://dx.doi.org/10.1016/S1364-6826(02)00134-7]
Venkat Ratnam M, Shravan Kumar M, Basha G, Anandan V K and Jayaraman A. 2010. Effect of the annular solar eclipse of 15 January 2010 on the lower atmospheric boundary layer over a tropical rural station. Journal of Atmospheric and Solar-Terrestrial Physics, 72(18): 1393-1400 [DOI: 10.1016/j.jastp.2010.10.009http://dx.doi.org/10.1016/j.jastp.2010.10.009]
Wan R, Li W J, Chen B, Xu G R and Zou Q. 2010. Observation of the meteorological parameters changes by GPS/MET and Microwave Radiometers during the 22 July 2009 Total Solar Eclipse. Journal of Huazhong Normal University (Natural Sciences), 44(1): 145-151
万蓉, 李武阶, 陈波, 徐桂荣, 邹倩. 2010. 日全食对地基GPS和微波辐射计气象观测影响分析. 华东师范大学学报(自然科学版), 44(1): 145-151 [DOI: 10.19603/j.cnki.1000-1190.2010.01.032http://dx.doi.org/10.19603/j.cnki.1000-1190.2010.01.032]
Wang K Y and Liu C H. 2010. Profiles of temperature responses to the 22 July 2009 total solar eclipse from FORMOSAT-3/COSMIC constellation. Geophysical Research Letters, 37(1): L01804 [DOI: 10.1029/2009GL040968http://dx.doi.org/10.1029/2009GL040968]
Wu P F. 2003. Satellite Data-Researching Effect on Solar Radiation by Clouds. Nanjing: Nanjing Institute of Meteorology
吴鹏飞. 2003. 用卫星资料研究云对太阳辐射的作用. 南京: 南京气象学院
Xu A L, Sun J H and Zhong A H. 2010. Variation characteristics of the solar radiation, air temperature and relative humidity during annular solar eclipse occurred on 15 January 2010 in Dali. Yunnan Geographic Environment Research, 22(6): 20-23
徐安伦, 孙绩华, 钟爱华. 2010. 云南大理“2010.1.15”日环食期间辐射和温湿度变化特征. 云南地理环境研究, 22(6): 20-23 [DOI: 10.3969/j.issn.1001-7852.2010.06.004http://dx.doi.org/10.3969/j.issn.1001-7852.2010.06.004]
Xu H. 2013. The Study of Impact Factors of Solar Radiation in Particular Areas of China. Qingdao: Ocean University of China
徐华. 2013. 中国太阳辐射区域影响因子研究. 青岛: 中国海洋大学
Xu S, Wang S F, Min X T, Liu L H and Zhu C X. 2019. Research for inversion methods of microwave radiation based on MWP967KV radiometer. Meteorological, Hydrological and Marine Instruments, 36(2): 38-44
徐爽, 王硕飞, 闵晓桐, 刘立辉, 朱彩霞. 2019. 基于MWP967KV辐射计的微波辐射反演方法研究. 气象水文海洋仪器, 36(2): 38-44 [DOI: 10.3969/j.issn.1006-009X.2019.02.009http://dx.doi.org/10.3969/j.issn.1006-009X.2019.02.009]
Yu J H. 2019. Study on Light Scattering and Radiative Transfer Properties of Water Clouds and Ice Clouds. Xi’an: Xi’an University of Technology
于记华. 2019. 水云和冰云的光散射与辐射传输特性的研究. 西安: 西安理工大学
相关作者
相关机构