Landsat-5 TM沙丘迁移场的误差消除与时序反演:以毛乌素沙地西北部沙丘为例
Error elimination and time sequence inversion of Landsat-5 TM dune migration field: Taking sand dunes in northwestern of Mu Us Sandy as example
- 2021年 页码:1-15
DOI: 10.11834/jrs.20211085
引用
扫 描 看 全 文
扫 描 看 全 文
引用
杨定江,冯光财,冯志雄,李国帅,张洁.XXXX.Landsat-5 TM沙丘迁移场的误差消除与时序反演:以毛乌素沙地西北部沙丘为例.遥感学报,XX(XX): 1-15
YANG Dingjiang,FENG Guangcai,FENG Zhixiong,LI Guoshuai,ZHANG Ji. XXXX. Error elimination and time sequence inversion of Landsat-5 TM dune migration field: Taking sand dunes in northwestern of Mu Us Sandy as example. National Remote Sensing Bulletin, XX(XX):1-15
通过COSI-Corr软件处理Landsat-5 TM可以较好地量化沙丘的迁移模式和速度大小,为防沙治沙工程的实施提供具体的指导和建议。目前关于Landsat-5 TM迁移场误差源分析和时序反演研究仍然较少。本文以毛乌素沙地西北部为研究区域获取了1991~2000年的沙丘迁移时间序列和年平均速度场,发现Landsat-5 TM迁移场的主要误差为轨道误差、姿态角误差和失相关噪声,这些误差消除后,精度相继提升23~34%、4~20%、2~5%,再利用最小二乘法反演后可提升13~14%。监测结果表明,1991~2000年毛乌素沙地西北沙丘向东南方向持续推进,最大速度可超过6 m/yr ,但受到西北-东南向的风力作用下,沿西北-东南向存在周期性往返运动;研究区域速度为0~1 m/yr的占63.9%,大于3 m/yr的则只有4.2%。Landsat-5 TM的误差消除和时序反演能有效地提高迁移场精度,进而获取更加准确可靠的时间序列。与以往研究不同的是,沙丘迁移场的误差消除和时序反演后可以更细致地反映出沙丘地表的实际风能环境。
Processing Landsat-5 TM through COSI-Corr software can better quantify the migration mode and speed of sand dunes, and provide specific guidance and suggestions for the implementation of sand prevention and control projects. At present, there are still few studies on the error source analysis and timing inversion of Landsat-5 TM migration field. This paper takes the northwestern part of the Mu Us Sand Land as the study area to obtain the dune migration time series and annual average velocity field from 1991 to 2000. It is found that the main errors of the Landsat-5 TM migration field are the orbit error, the attitude angle error and the miscorrelated noise. After the error is eliminated, the accuracy has been increased by 23~34%, 4~20%, and 2~5% successively, and after inversion by the least square method, it can be increased by 13~14%. The monitoring results showed that the sand dunes in the northwest of the Mu Us Sandy Land continued to advance to the southeast from 1991 to 2000, and the maximum speed could exceed 6 m/yr. However, under the action of the northwest-southeast wind, there was periodic back-and-forth movement along the northwest-southeast direction; The study area has a velocity of 0~1 m/yr accounting for 63.9%, and the velocity of more than 3 m/yr is only 4.2%. The error elimination and time sequence inversion of Landsat-5 TM can effectively improve the accuracy of the migration field, thereby obtaining a more accurate and reliable time sequence. Different from previous studies, the error elimination and time sequence inversion of the dune migration field can reflect the actual wind energy environment on the dune surface in more detail.
Landsat-5 TMCOSI-Corr误差分析沙丘迁移毛乌素沙地
Landsat-5 TMCOSI-Correrror analysisdune migrationMu Us sandy
Ali E, Xu W and Ding X.2020. Improved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 106-124.
Ayoub F, Avouac J P, Newman C E, Richardson M I, Lucas A, Leprince S and Bridges N T. 2014. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux. Nature Communications, 5(1), 1-8.
Ayoub F, Leprince S and Keene L. 2009. User’s guide to COSI-CORR co-registration of optically sensed images and correlation. California Institute of Technology: Pasadena, CA, USA, 38.
Baird T, Bristow C S and Vermeesch P.2019. Measuring sand dune migration rates with COSI-Corr and landsat: opportunities and challenges. Remote Sensing, 11(20), 2423.
Bridges N T, Ayoub F, Avouac J P, Leprince S, Lucas A and Mattson S. 2012. Earth-like sand fluxes on Mars. Nature, 485(7398), 339-342.
Bridges N T, Sullivan R, Newman C E, Navarro S, Van Beek J, Ewing R C, Ayoub F, Silvestro S, Gasnault O, Le Mouélic S, Lapotre M G A and Rapin W.2017. Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit. Journal of Geophysical Research: Planets, 122(10), 2077-2110.
Brown D G and Arbogast A F. 1999. Digital photogrammetric change analysis as applied to active coastal dunes in Michigan. Photogrammetric Engineering and Remote Sensing, 65, 467-474.
Bruno L, Horvat M and Raffaele L. 2018. Windblown sand along railway infrastructures: A review of challenges and mitigation measures. Journal of Wind Engineering and Industrial Aerodynamics, 177, 340-365.
Dabboor M D, Braun A and Kneen M A. 2013. Tracking sand dune migration in the Rub Al-Khali with ICESat laser altimetry. International journal of remote sensing, 34(11), 3832-3847.
Ding C, Feng G, Li Z, Shan X, Du Y and Wang H. 2016. Spatio-temporal error sources analysis and accuracy improvement in landsat 8 image ground displacement measurements. Remote Sensing, 8(11), 937.
Ding C, Feng G, Liao M and Zhang L.2020a. Change detection, risk assessment and mass balance of mobile dune fields near Dunhuang Oasis with optical imagery and global terrain datasets. International Journal of Digital Earth, 13(12), 1604-1623.
Ding C, Feng G, Liao M, Tao P, Zhang L and Xu Q. 2021. Displacement history and potential triggering factors of Baige landslides, China revealed by optical imagery time series. Remote Sensing of Environment, 254, 112253.
Ding C, Zhang L, Liao M, Feng G, Dong J, Ao M and Yu Y. 2020b. Quantifying the spatio-temporal patterns of dune migration near Minqin Oasis in northwestern China with time series of Landsat-8 and Sentinel-2 observations. Remote Sensing of Environment, 236, 111498.
Dong G R, Li B S, Gao S Y, Wu Z and Shao Y J. 1983. Discovery of Quaternary paleoeolian sand on the Ordos Plateau and its significance. Chinese Science Bulletin, 28(16), 998-1001.
董光荣, 李保生, 高尚玉, 吴正, 邵亚军. 1983. 鄂尔多斯高原第四纪古风成沙的发现及其意义.科学通报, 28(16), 998-1001.
Dong Z, Wang X and Chen G. 2000. Monitoring sand dune advance in the Taklimakan Desert. Geomorphology, 35(3-4), 219-231.
Feng G C, Xu B, Shan X J, Li Z W and Zhang G H. 2015. Awaran M W 7.7 earthquake deformation monitoring and parameter inversion in Pakistan based on Landsat 8 optical image. Chinese Journal of Geophysics, 58(5), 1634-1644.
冯光财, 许兵, 单新建, 李志伟, 张国宏. 2015. 基于Landsat 8光学影像的巴基斯坦 Awaran M W 7.7 地震形变监测及参数反演研究.地球物理学报, 58(5), 1634-1644.
Feng Z X.2020. Planet optical image ground deformation monitoring algorithm and application research, master's degree thesis, Central South University.(冯志雄.2020.
Planet光学影像地表形变监测算法和应用研究,硕士学位论文,中南大学.
Fryberger S G and Dean G.1979. Dune forms and wind regime//A study of global sand seas. US Government Printing Office Washington, 1052: 137-169.
Guo H D. 1986. The echo response of the space shuttle radar to the desert and subsurface rocks on the Alxa Plateau. Environmental Remote Sensing (01), 34 (-43+82-85.(郭华东.1986.航天飞机雷达对阿拉善高原沙漠及次地表岩石的回波响应.环境遥感(01),34-43+82-85.))
Ha S, Zhuang Y M, Wang L and Wang Z. 2006. Grain size distribution of lateral dunes on the southern margin of the Mu Us Sandy Land and its response to changes in wind direction. Advances in Geographical Sciences (06), 42-51.
哈斯, 庄燕美, 王蕾, 王志.2006.毛乌素沙地南缘横向沙丘粒度分布及其对风向变化的响应.地理科学进展(06),42-51.
He L J, Feng G C, Feng Z X and Gao H. 2019. Surface deformation monitoring of Sentinel-2 optical image: Taking the 2016 M_W7.8 Kaikoura earthquake in New Zealand as an example. Journal of Surveying and Mapping (03), 339-351.
贺礼家, 冯光财, 冯志雄, 高华.2019.Sentinel-2号光学影像地表形变监测:以2016年M_W7.8新西兰凯库拉地震为例.测绘学报(03),339-351.
Hugenholtz C H and Barchyn T E. 2010. Spatial analysis of sand dunes with a new global topographic dataset: new approaches and opportunities. Earth surface processes and landforms, 35(8), 986-992.
Jin Y Q. 1997. Analysis of the radiation characteristics of remote sensing data in the desert area of Northwest China by satellite-borne microwave SSM/I. Journal of Remote Sensing (03), 192-197.
金亚秋.1997.星载微波SSM/I对中国西北沙漠地区遥感数据的辐射特征分析.遥感学报(03),192-197.
Leprince S, Ayoub F, Klinger Y and Avouac J P. 2007a. Co-registration of optically sensed images and correlation (COSI-Corr): An operational methodology for ground deformation measurements. In 2007 IEEE International Geoscience and Remote Sensing Symposium (pp. 1943-1946). IEEE.
Leprince S, Barbot S, Ayoub F and Avouac J P.2007b. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1529-1558.
Li Z P, Yue L P, Xue X X, Wang M, Yang L R, Nie H G and Chen Chao. 2006. Grain size characteristics and geological significance of land desertification of different geological origin types on the southeastern margin of the Mu Us Sandy Land. Acta Sedimentologica Sinica, 24(2), 267-275.
李智佩, 岳乐平, 薛祥煦, 王岷, 杨利荣, 聂浩刚, 陈超. 2006. 毛乌素沙地东南部边缘不同地质成因类型土地沙漠化粒度特征及其地质意义.沉积学报, 24(2), 267-275.
Liu Q Q and Yang X P. 2018. Geochemical composition and provenance of aeolian sands in the Ordos Deserts, northern China. Geomorphology, 318, 354-374.
Necsoiu M, Leprince S, Hooper D M, Dinwiddie C L, McGinnis R N and Walter G R. 2009. Monitoring migration rates of an active subarctic dune field using optical imagery. Remote Sensing of Environment, 113(11), 2441-2447.
Ould Ahmedou D, Ould Mahfoudh A, Dupont P, Ould El Moctar A, Valance A and Rasmussen K R.2007. Barchan dune mobility in Mauritania related to dune and interdune sand fluxes. Journal of Geophysical Research: Earth Surface, 112(F2).
Pang Y J, Wu B, Jia X H and Shi L. 2019. Wind conditions and sand transport characteristics of the Mu Us Sandy Land. China Desert, 39(1), 62-67.
庞营军, 吴波, 贾晓红, 石麟. 2019. 毛乌素沙地风况及输沙势特征. 中国沙漠, 39(1), 62-67.
Scherler D, Leprince S and Strecker M R.2008.Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sensing of Environment, 112(10): 3806-3819.
Shao M, Luo W Y and Che X H. 2020. Preliminary application and accuracy test of COSI-Corr technology in the study of aeolian landforms. China Desert, 40(3), 151-158.
邵梅, 罗万银, 车雪华. 2020. COSI-Corr 技术在风沙地貌研究中的初步应用及精度检验. 中国沙漠,40(3), 151-158.
Silvestro S, Vaz D A, Yizhaq H and Esposito F. 2016. Dune-like dynamic of Martian Aeolian large ripples. Geophysical Research Letters, 43(16), 8384-8389.
Tsoar H and Blumberg D G.2002. Formation of parabolic dunes from barchan and transverse dunes along Israel's Mediterranean coast. Earth Surface Processes and Landforms, 27(11), 1147-1161.
Vermeesch P and Drake N.2008. Remotely sensed dune celerity and sand flux measurements of the world's fastest barchans (Bodele, Chad). Geophysical Research Letters, 35(24).
Wang J P, Liu L Y and Shen L L. 2013. Research on the movement law of crescent dunes in Mu Us Sandy Land based on Google Earth. Remote Sensing Technology and Application, 28(6), 1094-1100.
王静璞, 刘连友, 沈玲玲.2013. 基于Google Earth的毛乌素沙地新月形沙丘移动规律研究. 遥感技术与应用, 28(6), 1094-1100.
Wang X, Chen F, Hasi E and Li J.2008. Desertification in China: an assessment. Earth-Science Reviews, 88(3-4), 188-206.
Xu M J, Lu P, Xiao N, Yang J H, Liu Z Y, Feng M Y and Liang Z. 2020. The influence of vegetation cover on sand dune movement in the northwestern part of the Mu Us Sandy Land. China Desert (04), 71-80.
许明静,吕萍,肖南,杨军怀,刘铮瑶,冯淼彦,梁准.2020.毛乌素沙地西北部植被覆盖对沙丘移动的影响. 中国沙漠(04),71-80.
Yao Z Y, Wang T, Han Z W, Zhang W M and Zhao A G. 2007. Migration of sand dunes on the northern Alxa Plateau, Inner Mongolia, China. Journal of arid environments, 70(1), 80-93.
Zhu Z D, Chen Z P, Wu Z, Li J Z, Li B Y and Wu G C. 1981. Aeolian Landform Research of Taklimakan Desert. Beijing: Science Press
朱震达,陈治平,吴正,李钜章,李炳元,吴功成.1981.塔克拉玛干沙漠风沙地貌研究.北京:科学出版社.)
相关作者
相关机构