高分五号大气痕量气体差分吸收光谱仪观测数据的火山喷发SO2总量反演
Volcanic SO2 retrieved from GF-5 Environmental trace gas Monitoring Instrument
- 2021年25卷第11期 页码:2326-2338
纸质出版日期: 2021-11-07
DOI: 10.11834/jrs.20211088
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-11-07 ,
扫 描 看 全 文
闫欢欢,王后茂,王维和,张兴赢.2021.高分五号大气痕量气体差分吸收光谱仪观测数据的火山喷发SO2总量反演.遥感学报,25(11): 2326-2338
Yan H H,Wang H M,Wang W H and Zhang X Y. 2021. Volcanic SO2 retrieved from GF-5 Environmental trace gas Monitoring Instrument. National Remote Sensing Bulletin, 25(11):2326-2338
火山喷发产生的高浓度SO
2
气体及其远距离输送会对全球气候变化和航空飞行安全产生重要影响。卫星遥感技术以大面积连续观测、高时空分辨率等优势成为大气SO
2
监测的重要手段之一。作为中国第一颗紫外可见光波段的高光谱载荷,高分五号卫星大气痕量气体差分吸收光谱仪(GF-5 EMI)通过探测地球大气或表面反射、散射的紫外辐射来解析SO
2
总量的分布和变化。本文首先基于大气辐射传输模型SCIATRAN,选择中低纬地区地表类型均一的海洋区域像元,模拟了典型大气条件下的晴空天顶反照率,用以评价EMI载荷天顶观测光谱的精度。其次,基于TROPOMI L1 Radiance辐亮度数据和DOAS反演原理,经477 nm O
4
云筛选、光谱定标、慢变剔除、斜柱转垂直柱等步骤后,获得同一火山喷发区域的SO
2
总量反演结果并与TROPOMI官方offline L2 SO
2
产品进行对比分析。最后,利用GF-5 EMI UV-2通道观测数据,采用DOAS算法反演获得GF-5 EMI大气SO
2
总量,并将反演结果与国际同类载荷S5P/TROPOMI SO
2
总量结果进行比较分析,评判GF-5 EMI在全球火山活动SO
2
变化监测方面的能力。结果显示,300—400 nm波段范围内,海洋区域采样点EMI观测光谱值低于SCIATRAN模拟光谱值,EMI与TROPOMI观测光谱呈现出相似的系统性偏差。基于高空间高光谱分辨率的TROPOMI L1 Radiance辐亮度数据、315—327 nm、325—335 nm和360—390 nm共3个波段窗口、以及上述DOAS反演原理获得的SO
2
结果与TROPOMI官方发布的offline L2 SO
2
产品结果相关性较高,两者的相关系数可达到0.97—0.99,相对偏差在3%—9%。GF-5 EMI能够获取火山喷发SO
2
排放的时空分布特征,并与国际同类载荷TROPOMI反演结果具有较高的空间一致性,能够满足全球火山喷发监测、预警及其气候影响研究的应用需求。
Sulfur dioxide (SO
2
) from volcanic eruption and its long-distance transportation has a significant impact on global climate change and aviation safety. Satellite remote sensing technology provides an unprecedented advantage for continuous
large spatial and short-revisit monitoring for atmospheric SO
2
. GF-5 Environmental trace gas Monitoring Instrument (EMI) with high spatial resolution is the China’s first instrument of hyper spectral measurements with wavelength range from 240 nm to 710 nm
and makes daily global observations of key atmospheric constituents
including ozone
nitrogen dioxide
sulfur dioxide.
In this paper
based on the atmospheric radiation transfer model SCIATRAN
the clear sky albedo under typical atmospheric conditions is simulated by selecting the ocean area pixels with uniform surface types in the middle and low latitudes to evaluate the accuracy of the EMI Top-of-Atmosphere (TOA) albedo.
Secondly
based on the S5P/TROPOMI L1 Radiance data and the DOAS algorithm
after 477nm O
4
cloud screening
spectral calibration
slant column to vertical column conversion
the inversion results of total SO
2
columns over volcanic eruption areas were obtained and compared with TROPOMI offline L2 SO
2
products.
Finally
GF-5/EMI SO
2
columns were retrieved by using GF-5 EMI UV-2 band observations and DOAS algorithm
and then the retrieved GF-5/EMI SO
2
columns were compared with similar S5P/TROPOMI SO
2
columns to evaluate the ability of GF-5/EMI on monitoring global SO
2
change from volcanic activity.
Results show that
in the band range of 300—400 nm
the EMI spectra of the sampling points in the ocean area are lower than the simulated spectra of SCIATRAN
and EMI and TROPOMI spectra show similar systematic biases. SO
2
obtained by using TROPOMI L1 Radiance data
three band windows of 315—327 nm
325—335 nm and 360—390 nm
and DOAS inversion algorithm are compared with the TROPOMI offline L2 SO
2
products
which show high correlations (correlation coefficient between 0.97—0.99
relative deviation between 3% and 9%). Therefore
GF-5/EMI can obtain the daily distribution of SO
2
from volcanic eruption. The accuracy of GF-5/EMI SO
2
columns can meet the needs of application of global volcano monitoring.
遥感GF-5 EMI火山SO2总量DOASTROPOMI
remote sensingGF-5 EMIvolcanoSO2 columnDOASTROPOMI
Acarreta J R, De Haan J F and Stammes P. 2004. Cloud pressure retrieval using the O2-O2 absorption band at 477 nm. Journal of Geophysical Research: Atmospheres, 109(D5): D05204 [DOI: 10.1029/2003JD003915http://dx.doi.org/10.1029/2003JD003915]
Benkovitz C M, Schwartz S E, Jensen M P and Miller M A. 2006. Attribution of modeled atmospheric sulfate and SO2 in the Northern Hemisphere for June-July 1997. Atmospheric Chemistry and Physics, 6(12): 4723-4738 [DOI: 10.5194/ACP-6-4723-2006http://dx.doi.org/10.5194/ACP-6-4723-2006]
Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann O C, Vogel A, Hartmann M, Kromminga H, Bovensmann H, Frerick J and Burrows J P. 2003. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230—2380 nm region. Journal of Photochemistry & Photobiology A Chemistry, 157: 167-184. [DOI: 10.1016/S1010-6030(03)00062-5http://dx.doi.org/10.1016/S1010-6030(03)00062-5]
Brion J, Chakir A, Charbonnier J, Daumont D, Parisse C and Malicet J. 1998. Absorption spectra measurements for the ozone molecule in the 350—830 nm region. Journal of Atmospheric Chemistry, 30: 291-299. [DOI: 10.1023/A:1006036924364http://dx.doi.org/10.1023/A:1006036924364]
Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, DeBeek R, Hoogen R, Bramstedt K, Eichmann K U and Eisinger M. 1999. The global ozone monitoring experiment (GOME): mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2): 151-175 [DOI: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2]
Carn S A, Krueger A J, Krotkov N A, Yang K and Evans K. 2009. Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation. Natural Hazards, 51(2): 325-343 [DOI: 10.1007/s11069-008-9228-4http://dx.doi.org/10.1007/s11069-008-9228-4]
Carn S A, Krueger A J, Krotkov N A, Yang K and Levelt P F. 2007. Sulfur dioxide emissions from Peruvian copper smelters detected by the Ozone Monitoring Instrument. Geophysical Research Letters, 34(9): L09801 [DOI: 10.1029/2006GL029020http://dx.doi.org/10.1029/2006GL029020]
Carn S A, Strow L L, de Souza-Machado S, Edmonds Y and Hannon S. 2005. Quantifying tropospheric volcanic emissions with AIRS: the 2002 eruption of Mt. Etna (Italy). Geophysical Research Letters, 32(2): L02301 [DOI: 10.1029/2004GL021034http://dx.doi.org/10.1029/2004GL021034]
Casadevall T J. 1994. The 1989-1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations. Journal of Volcanology and Geothermal Research, 62(1/4): 301-316 [DOI: 10.1016/0377-0273(94)90038-8http://dx.doi.org/10.1016/0377-0273(94)90038-8]
Chance K and Kurucz R L. 2010. An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(9): 1289-1295 [DOI: 10.1016/j.jqsrt.2010.01.036http://dx.doi.org/10.1016/j.jqsrt.2010.01.036]
Chen L F, Tao J H, Wang Z F, Li S S, Han D, Zhang Y, Yu C and Su L. 2009. Monitoring of air quality during haze days in Beijing and its surround area during Olympic games. Journal of Atmospheric and Environmental Optics, 4(4): 256-265
陈良富, 陶金花, 王子峰, 李莘莘, 韩冬, 张莹, 余超, 苏林. 2009. 奥运期间北京及周边地区霾天空气质量监测. 大气与环境光学学报, 4(4): 256-265 [DOI: 10.3969/j.issn.1673-6141.2009.04.002http://dx.doi.org/10.3969/j.issn.1673-6141.2009.04.002]
Eisinger M and Burrows J P. 1998. Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument. Geophysical Research Letters, 25(22): 4177-4180 [DOI: 10.1029/1998GL900128http://dx.doi.org/10.1029/1998GL900128]
Fishman J, Bowman K W, Burrows J P, Richter A, Chance K V, Edwards D P, Martin R V, Morris G A, Pierce R B, Ziemke J R, Al-Saadi J A, Creilson J K, Schaack T K and Thompson A M. 2008. Remote sensing of tropospheric pollution from space. Bulletin of the American Meteorological Society, 89(6): 805-822 [DOI: 10.1175/2008BAMS2526.1http://dx.doi.org/10.1175/2008BAMS2526.1]
Flynn L E, Seftor C J, Larsen J C and Xu P. 2006. The ozone mapping and profiler suite//Qu J J, Gao W, Kafatos M, Murphy R E and Salomonson V, eds. Earth Science Satellite Remote Sensing. Berlin, Heidelberg: Springer [DOI: 10.1007/978-3-540-37293-6_15http://dx.doi.org/10.1007/978-3-540-37293-6_15]
Gottwald M, Bovensmann H, Lichtenberg G, Noel S, von Bargen A, Slijkhuis S, Piters A, Hoogeveen R, von Savigny C and Buchwitz M. 2006. Sciamachy, Monitoring the Changing Earth’s Atmosphere. Germany: DLR
Greenblatt G D, Orlando J J, Burkholder J B and Ravishankara A R. 1990. Absorption measurements of oxygen between 330 and 1140 nm. Journal of Geophysical Research, 95(D11): 18577-18582. [DOI: 10.1029/JD095iD11p18577http://dx.doi.org/10.1029/JD095iD11p18577]
Han D, Chen L F, Tao J H, Su L, Li S S, Yu C, Zhang Y and He B H. 2011. A convolution algorithm to calculate differential cross sections of the Ring effect in the Earth’s atmosphere based on rotational Raman scattering. Scientia Sinica: Earth Sciences, 54(9): 1407-1412
韩冬, 陈良富, 陶金花, 苏林, 李莘莘, 余超, 张莹, 贺宝华. 2011. 基于转动拉曼散射的大气Ring效应差分截面卷积算法研究. 中国科学: 地球科学, 41(10): 1524-1529 [DOI: 10.1007/s11430-011-4226-xhttp://dx.doi.org/10.1007/s11430-011-4226-x]
He H, Li C, Loughner C P, Li Z Q, Krotkov N A, Yang K, Wang L, Zheng Y F, Bao X D, Zhao G Q and Dickerson R R. 2012. SO2 over central China: measurements, numerical simulations and the tropospheric sulfur budget. Journal of Geophysical Research: Atmospheres, 117(D16): D00K37 [DOI: 10.1029/2011JD016473http://dx.doi.org/10.1029/2011JD016473]
He K B, Huo H and Zhang Q. 2002. Urban air pollution in China: current status, characteristics, and progress. Annual Review of Energy and the Environment, 27: 397-431 [DOI: 10.1146/annurev.energy.27.122001.083421http://dx.doi.org/10.1146/annurev.energy.27.122001.083421]
Hermans C, Vandaele A and Fally S. 2009. Fourier transform measurements of SO2 absorption cross sections: I. Temperature dependence in the 24 000-29 000 cm-1 (345-420 nm) region. Journal of Quantitative Spectroscopy and Radiative Transfer, 110: 756-765. [DOI: 10.1016/j.jqsrt.2009.01.031http://dx.doi.org/10.1016/j.jqsrt.2009.01.031]
Heue K P, Brenninkmeijer C A M, Wagner T, Mies K, Dix B, Frieß U, Martinsson B G, Slemr F and van Velthoven P F J. 2010. Observations of the 2008 Kasatochi volcanic SO2 plume by CARIBIC aircraft DOAS and the GOME-2 satellite. Atmospheric Chemistry and Physics, 10(10): 4699-4713 [DOI: 10.5194/acp-10-4699-2010http://dx.doi.org/10.5194/acp-10-4699-2010]
Jernelov A. 1983. Acid-rain and sulfur-dioxide emissions in China. Ambio, 12(6): 362
Jiang J, Zha Y, Gao J and Jiang J J. 2012. Monitoring of SO2 column concentration change over China from Aura OMI data. International Journal of Remote Sensing, 33(6): 1934-1942 [DOI: 10.1080/01431161.2011.603380http://dx.doi.org/10.1080/01431161.2011.603380]
Khokhar M F, Frankenberg C, Van Roozendael M, Beirle S, Kühl S, Richter A, Platt U and Wagner T. 2005. Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996-2002. Advances in Space Research, 36(5): 879-887 [DOI: 10.1016/j.asr.2005.04.114http://dx.doi.org/10.1016/j.asr.2005.04.114]
Krueger A J. 1983. Sighting of El Chichón sulfur dioxide clouds with the nimbus 7 total ozone mapping spectrometer. Science, 220(4604): 1377-1379 [DOI: 10.1126/science.220.4604.1377http://dx.doi.org/10.1126/science.220.4604.1377]
Larssen T, Lydersen E, Tang D G, He Y, Gao J X, Liu H Y, Duan L, Seip H M, Vogt R D, Mulder J, Shao M, Wang Y H, Shang H, Zhang X S, Solberg S, Aas W, Okland T, Eilertsen O, Angell V, Li Q R, Zhao D W, Xiang R J, Xiao J S and Luo J H. 2006. Acid rain in China. Environmental Science and Technology, 40(2): 418-425 [DOI: 10.1021/es0626133http://dx.doi.org/10.1021/es0626133]
Levelt P F, van den Oord G H J, Dobber M R, Malkki A, Visser H, de Vries J, Stammes P, Lundell J O V and Saari H. 2006. The Ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1093-1101 [DOI: 10.1109/TGRS.2006.872333http://dx.doi.org/10.1109/TGRS.2006.872333]
Martin R V. 2008. Satellite remote sensing of surface air quality. Atmospheric Environment, 42(34): 7823-7843 [DOI: 10.1016/j.atmosenv.2008.07.018http://dx.doi.org/10.1016/j.atmosenv.2008.07.018]
McCormick M P, Thomason L W and Trepte C R. 1995. Atmospheric effects of the Mt Pinatubo eruption. Nature, 373(6513): 399-404 [DOI: 10.1038/373399A0http://dx.doi.org/10.1038/373399A0]
Munro R, Eisinger M, Anderson C, Callies J, Corpaccioli E, Lang R, Lefebvre A, Livschitz Y and Albiñana A P. 2006. GOME-2 on MetOp//Proceedings of the 2006 EUMETSAT Meteorological Satellite Conference: 12-16
Munro R, Eisinger M, Anderson C, Callies J, Corpaccioli E, Lang R, Lefebvre A, Livschitz Y and Albiñana A P. 2006. GOME-2 on MetOp//Proceedings of the 2006 EUMETSAT Meteorological Satellite Conference. Helsinki: Eur. Org. for the Exploit of Meteorol. Satell.: 12-16
Platt U and Stutz J. 2008. Differential Optical Absorption Spectroscopy: Principles and Applications. Berlin, Heidelberg: Springer
Richter A. 2009. Algorithm theoretical basis document for the GOME-2 rapid volcanic SO2 product[EB/OL]. http://www.doas-bremen.de/so2_alerts/gome2_so2_atbd_091005.pdfhttp://www.doas-bremen.de/so2_alerts/gome2_so2_atbd_091005.pdf
Richter A, Wittrock F and Burrows J P. 2006. SO2 measurements with SCIAMACHY//Proceedings of the Atmospheric Science Conference. [s.l.]: [s.n.]: 8-12
Richter A. 2009. Algorithm theoretical basis document for the GOME-2 rapid volcanic SO2 product[EB/OL]. SAVAA Project. http://savaa.nilu.no/PublicArchive.aspxhttp://savaa.nilu.no/PublicArchive.aspx
Rozanov A, Rozanov V, Buchwitz M, Kokhanovsky A and Burrows J P. 2005. SCIATRAN 2.0 - A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region. Advances in Space Research, 36(5): 1015-1019 [DOI: 10.1016/j.asr.2005.03.012http://dx.doi.org/10.1016/j.asr.2005.03.012]
Sigurdsson H, Houghton B F, McNutt S R, Rymer H, Stix J and Ballard R D. 2000. Encyclopedia of Volcanoes. San Diego: Academic Press: 915-930
Sun Y Z, Jiang G W, Li Y D, Yang Y, Dai H S, He J, Ye Q H, Cao Q, Dong C Z, Zhao S H and Wang W H. 2018. GF-5 satellite: overview and application prospects. Spacecraft Recovery and Remote Sensing, 39(3): 1-13
孙允珠, 蒋光伟, 李云端, 杨勇, 代海山, 何军, 叶擎昊, 曹琼, 董长哲, 赵少华, 王维和. 2018. “高分五号”卫星概况及应用前景展望. 航天返回与遥感, 39(3): 1-13 [DOI: 10.3969/j.issn.1009-8518.2018.03.001http://dx.doi.org/10.3969/j.issn.1009-8518.2018.03.001]
Theys N, Hedelt P, De Smedt I, Lerot C, Yu H, Vlietinck J, Pedergnana M, Arellano S, Galle B, Fernandez D, Carlito C J M, Barrington C, Taisne B, Delgado-Granados H, Loyola D and Van Roozendael M. 2019. Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Scientific Reports, 9(1): 2643 [DOI: 10.1038/S41598-019-39279-Yhttp://dx.doi.org/10.1038/S41598-019-39279-Y]
Tilstra L G, Tuinder O N E, Wang P and Stammes P. 2017. Surface reflectivity climatologies from UV to NIR determined from Earth observations by GOME-2 and SCIAMACHY. Journal of Geophysical Research: Atmospheres, 122(7): 4084-4111 [DOI: 10.1002/2016JD025940http://dx.doi.org/10.1002/2016JD025940]
van Geffen J H G M and van Oss R F. 2003. Wavelength calibration of spectra measured by the Global Ozone Monitoring Experiment by use of a high-resolution reference spectrum. Applied Optics, 42(15): 2739-2753 [DOI: 10.1364/AO.42.002739http://dx.doi.org/10.1364/AO.42.002739]
Vandaele A C, Hermans C, Simon P C, Carleer M, Colins R, Fally S, Mérienne M F, Jenouvrier A and Coquart B. 1998. Measurements of the NO2 absorption cross-sections from 42000 cm-1 to 10000 cm-1 (238—1000 nm) at 220 K and 294 K. Journal of Quantitative Spectroscopy and Radiative Transfer, 59: 171-184. [DOI: 10.1016/S0022-4073(97)00168-4http://dx.doi.org/10.1016/S0022-4073(97)00168-4]
Veefkind J P, de Haan J F, Sneep M and Levelt P F. 2016. Improvements to the OMI O2-O2 operational cloud algorithm and comparisons with ground-based radar-lidar observations. Atmospheric Measurement Techniques, 9(12): 6035-6049 [DOI: 10.5194/amt-9-6035-2016http://dx.doi.org/10.5194/amt-9-6035-2016]
Voors R, de Vries J, Bhatti I S, Lobb D, Wood T, van der Valk N, Aben I and Veefkind P. 2017. TROPOMI, the Sentinel 5 precursor instrument for air quality and climate observations: status of the current design//Proceedings of SPIE 10564, International Conference on Space Optics — ICSO 2012. Ajaccio: SPIE [DOI: 10.1117/12.2309017http://dx.doi.org/10.1117/12.2309017]
Yan H, Chen L, Tao J, Su L, Huang J, Han D and Yu C. 2012. Corrections for OMI SO2 BRD retrievals influenced by row anomalies. Atmospheric Measurement Techniques, 5(11): 2635-2646 [DOI: 10.5194/amt-5-2635-2012http://dx.doi.org/10.5194/amt-5-2635-2012]
Yan H H, Li X J, Zhang X Y, Wang W H, Chen L F, Zhang M G and Xu J. 2016. Comparison and validation of band residual difference algorithm and principal component analysis algorithm for retrievals of atmospheric SO2 columns from satellite observations. Acta Physica Sinica, 65(8): 084204
闫欢欢, 李晓静, 张兴赢, 王维和, 陈良富, 张美根, 徐晋. 2016. 大气SO2柱总量遥感反演算法比较分析及验证. 物理学报, 65(8): 084204 [DOI: 10.7498/aps.65.084204http://dx.doi.org/10.7498/aps.65.084204]
Yang K, Dickerson R R, Carn S A, Ge C and Wang J. 2013. First observations of SO2 from the satellite Suomi NPP OMPS: widespread air pollution events over China. Geophysical Research Letters, 40(18): 4957-4962 [DOI: 10.1002/GRL.50952http://dx.doi.org/10.1002/GRL.50952]
Zhang Q, He K B and Huo H. 2012. Cleaning China's air. Nature, 484(7393): 161-162 [DOI: 10.1038/484161ahttp://dx.doi.org/10.1038/484161a]
Zhao D W and Sun B Z. 1986. Air pollution and acid rain in China. Ambio, 15(1): 2-5
Zhou H J, Liu W Q, Si F Q, Zhao M J, Jiang Y and Xue H. 2012. Spectral calibration for space-borne differential optical absorption spectrometer. Spectroscopy and Spectral Analysis, 32(11): 2881-2885
周海金, 刘文清, 司福祺, 赵敏杰, 江宇, 薛辉. 2012. 星载大气痕量气体差分吸收光谱仪光谱定标技术研究. 光谱学与光谱分析, 32(11): 2881-2885) [DOI: 10.3964/j.issn.1000-0593(201211-2881-05http://dx.doi.org/10.3964/j.issn.1000-0593(2012)11-2881-05]
相关作者
相关机构