超光谱热红外数据通道选择方法在O3和CH4廓线反演中的应用
Application of a channel-selection method on the retrieval of O3 and CH4 profiles from Ultra-Spectral Thermal Infrared Data
- 2024年28卷第2期 页码:385-397
纸质出版日期: 2024-02-07
DOI: 10.11834/jrs.20211223
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-02-07 ,
扫 描 看 全 文
姚微源,张贝贝,王宁,马灵玲,钱永刚,王新鸿,李传荣,唐伶俐.2024.超光谱热红外数据通道选择方法在O3和CH4廓线反演中的应用.遥感学报,28(2): 385-397
Yao W Y,Zhang B B,Wang N,Ma L L,Qian Y G,Wang X H,Li C R and Tang L L. 2024. Application of a channel-selection method on the retrieval of O3 and CH4 profiles from Ultra-Spectral Thermal Infrared Data. National Remote Sensing Bulletin, 28(2):385-397
与高光谱热红外数据相比,超光谱热红外数据中包含了臭氧(O
3
)和甲烷(CH
4
)在大气垂直剖面上更多的状态信息,为提升O
3
和CH
4
廓线的反演精度提供了可能。然而,超光谱热红外数据通道之间的间隔较窄,这在给数据引入一些特有可反演信息的同时还引入了大量的相似信息,这些特征均无法被现有的基于高光谱热红外数据的通道选择方法识别。为了保证超光谱热红外数据反演O
3
和CH
4
廓线的效率和精度,我们提出了一种基于大气灵敏度和雅可比剖面的通道优选方法(OWSP法)。该方法首先通过分析通道对不同气体的灵敏度情况,优选出受其他气体干扰较小的通道为初选通道;其次,深度分析通道雅可比特征后提出了优化雅可比矩阵的策略,具体为将通道雅可比量化为表征通道信息容量的因素,并采用迭代的方法获取最终的通道选择结果。本文将OWSP方法应用在阿拉善、北京—天津、长江三角洲和珠江三角洲4个典型地区的冬夏季大气条件下,与常用的最佳灵敏度法(OSP法)相比,OWSP方法所选的通道集合中冗余信息少,同时也可以识别一些具有特殊有效信息但灵敏度相对较低且受其他干扰因素干扰较大的通道。反演结果进一步表明,在多数情况下,OWSP方法可以有效提升廓线的反演精度,O
3
廓线的平均反演精度提高了9.30%,CH
4
廓线的平均反演精度提高了4.90%。本文能为中国超光谱热红外载荷开发以及数据应用提供必要的技术支撑,具有重要的理论和应用价值。
Compared with high-spectral thermal infrared data
ultra-spectral thermal infrared data contains enhanced atmospheric vertical information of ozone (O
3
) and methane (CH
4
). This finding indicates the possibility to improve the accuracy of retrieved O
3
and CH
4
profiles. Due to the narrow channel intervals of the ultra-spectral thermal infrared data
abundant special information and redundant information is induced. However
information cannot be detected by channel-selection methods for high-spectral thermal infrared data
thereby impeding the superiority of ultra-spectral data for the retrieval of trace-gas profiles. As such
a novel channel-selection method based on the gas-sensitivity and weighting-function characteristics (OWSP) has been promoted
aiming to enhance the retrieval efficiency and accuracy of O
3
and CH
4
profiles from ultra-spectral thermal infrared data. The method comprises two steps. First
the sensitivities of the channels to different gases are analyzed
and the signal-to-interference ratio (
r
STI
) are obtained. On this basis
channels with abundant information for retrieved gas and insensitivity to other gases can be detected
which are taken as the initial channel group. Second
a strategy of optimizing the distribution of the weighting function is promoted based on the features of Jacobians to O
3
and CH
4
. The channel information content can then be quantified by the optimized weighting function. An iterative approach is applied to select the optimal channel group to retrieve atmospheric profiles. In this paper
the promotion effect of OWSP method for O
3
and CH
4
profile retrieval from ultra-spectral thermal infrared data is evaluated by applying in the winter and summer atmospheric situation of the regions of Alxa Desert (AL)
Beijing Tianjin district (JJ)
Yangtze River Basin (YRD)
and Pearl River Basin (PRD). The optimal sensitivity profile (OSP) method
which suggests good performance for high-spectral thermal infrared data in literature
is used in the control group. By comparing with the channel selection results of OSP method
it shows that the OWSP method can effectively screen the correlated channels with similar information for the strong infrared radiation gas
O
3
. It can also select some channels with special information. Conversely
it has relatively low sensitivity for the weak infrared radiation gas
CH
4
thereby ensuring the accuracy and efficiency of the subsequent retrieval process. The retrieval results of O
3
and CH
4
profiles with the channel group selected by the two methods further prove that the OWSP method can efficiently improve the accuracy of the retrieved profiles in most situations
and the mean retrieval accuracy of the O
3
and CH
4
profiles increase 9.30% and 4.90%
respectively. This research has important theoretical and application value
which can provide some essential technological support for the development and data application of ultra-spectral TIR sensor for our country in the future.
遥感热红外数据超光谱通道选择雅可比气体敏感性O3和CH4廓线反演
remote sensingthermal infrared dataultra-spectralchannel selectionjacobiansgas sensitivityO3 and CH4 profile retrieval
Aires F, Chédin A, Scott N A and Rossow W B. 2002. A regularized neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument. Journal of Applied Meteorology, 41(2): 144-159 [DOI: 10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO;2]
Von Clarmann T and Echle G. 1998. Selection of optimized microwindows for atmospheric spectroscopy. Applied Optics. 37(33):7661-7669. [DOI: 10.1364/AO.37.007661].
Cape J N. 2008. Surface ozone concentrations and ecosystem health: Past trends and a guide to future projections. Science of The Total Environment, 400(1/3): 257-269 [DOI: 10.1016/j.scitotenv.2008.06.025http://dx.doi.org/10.1016/j.scitotenv.2008.06.025]
Chédin A, Hollingsworth A, Scott N A, Serrar S, Crevoisier C and Armante R. 2002. Annual and seasonal variations of atmospheric CO2, N2O and CO concentrations retrieved from NOAA/TOVS satellite observations. Geophysical Research Letters, 29(8): 110-1-110-4 [DOI: 10.1029/2001GL014082http://dx.doi.org/10.1029/2001GL014082]
Chédin A, Saunders R, Hollingsworth A, Scott N, Matricardi M, Etcheto J, Clerbaux C, Armante R and Crevoisier C. 2003. The feasibility of monitoring CO2 from high-resolution infrared sounders. Journal of Geophysical Research: Atmospheres, 108(D2): 4064 [DOI: 10.1029/2001JD001443http://dx.doi.org/10.1029/2001JD001443]
Chen T M, Kuschner W G, Gokhale J and Shofer S. 2007. Outdoor air pollution: Ozone health effects. The American Journal of the Medical Sciences, 333(4): 244-248 [DOI: 10.1097/MAJ.0b013e31803b8e8chttp://dx.doi.org/10.1097/MAJ.0b013e31803b8e8c]
Crevoisier C, Chédin A and Scott N A. 2003. AIRS channel selection for CO2 and other trace-gas retrievals. Quarterly Journal of the Royal Meteorological Society, 129(593): 2719-2740 [DOI: 10.1256/qj.02.180http://dx.doi.org/10.1256/qj.02.180]
Dong X, Xu P M and Hou L Z. 2018. Design and implementation of atmospheric infrared ultra-spectral sounder. Spacecraft Recovery & Remote Sensing, 39(3): 29-37
董欣, 徐彭梅, 侯立周. 2018. 大气环境红外甚高光谱分辨率探测仪设计与实现. 航天返回与遥感, 39(3): 29-37 [DOI: 10.3969/j.issn.1009-8518.2018.03.004http://dx.doi.org/10.3969/j.issn.1009-8518.2018.03.004]
Du H D, Huang S X and Shi H Q. 2008. Method and experiment of channel selection for high spectral resolution data. Acta Physica Sinica, 57(12): 7685-7692
杜华栋, 黄思训, 石汉青. 2008. 高光谱分辨率遥感资料通道最优选择方法及试验. 物理学报, 57(12): 7685-7692 [DOI: 10.3321/j.issn:1000-3290.2008.12.045http://dx.doi.org/10.3321/j.issn:1000-3290.2008.12.045]
Gambacorta A and Barnet C D. 2013. Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-Track Infrared Sounder (CrIS). IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3207-3216 [DOI: 10.1109/TGRS.2012.2220369http://dx.doi.org/10.1109/TGRS.2012.2220369]
Inness A, Ades M, Agusti-Panareda A, Barré J, Benedictow A, Blechschmidt A M, Dominguez J, Engelen R, Eskes H, Flemming J, Huijnen V, Jones L, Kipling Z, Massart S, Parrington M, Peuch V H, Razinger M, Rémy S, Schulz M and Suttie M. 2019. The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics Discussions, 19(6): 3515-3556 [DOI: 10.5194/acp-19-3515-2019http://dx.doi.org/10.5194/acp-19-3515-2019]
IPCC. 2014. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
Lerner J A, Weisz E and Kirchengast G. 2002. Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements. Journal of Geophysical Research: Atmospheres, 107(14): ACH 4-1-ACH 4-11 [DOI: 10.1029/2001JD900254http://dx.doi.org/10.1029/2001JD900254]
Ma P F, Chen L F, Li Q, Tao M H, Wang Z F, Zhang Y, Wang Z T and Zhou C Y. 2015. Simulation of atmospheric nitrous oxide profiles retrieval from AIRS observations. Spectroscopy and Spectral Analysis, 35(6): 1690-1694
马鹏飞, 陈良富, 厉青, 陶明辉, 王子峰, 张莹, 王中挺, 周春艳. 2015. 红外高光谱资料AIRS反演晴空条件下大气氧化亚氮廓线. 光谱学与光谱分析, 35(6): 1690-1694 [DOI: 10.3964/j.issn.1000-0593(2015)06-1690-05http://dx.doi.org/10.3964/j.issn.1000-0593(2015)06-1690-05]
McKenzie R L, Aucamp P J, Bais A F, Björn L O, Ilyas M and Madronich S. 2011. Ozone depletion and climate change: impacts on UV radiation. Photochemical & Photobiological Sciences, 10(2): 182-198 [DOI: 10.1039/c0pp90034fhttp://dx.doi.org/10.1039/c0pp90034f]
Miao J,Li X Y,Wang H M,Wang Y P,Zhu S Y and Wang Z H. 2021. Atmospheric water vapor profiles retrieval algorithm for occultation satellite-based infrared payloads. National Remote Sensing Bulletin, 25(6):1201-1215
苗晶,李小英,王红梅,王雅鹏,朱松岩,王智灏.2021.GF-5 AIUS水汽廓线反演算法研究.遥感学报,25(6): 1201-1215
Pavlov A A, Kasting J F, Brown L L, Rages K A and Freedman R. 2000. Greenhouse warming by CH4 in the atmosphere of early Earth. Journal of Geophysical Research: Planets, 105(E5): 11981-11990 [DOI: 10.1029/1999JE001134http://dx.doi.org/10.1029/1999JE001134]
Rabier F, Fourrié N, Chafäi D and Prunet P. 2002. Channel selection methods for infrared atmospheric sounding interferometer radiances. Quarterly Journal of the Royal Meteorological Society, 128(581): 1011-1027 [DOI: 10.1256/0035900021643638http://dx.doi.org/10.1256/0035900021643638]
Rodgers C D. 1998. Information content and optimization of high-spectral-resolution measurements. Advances in Space Research, 21(3), 361-367[DOI: 10.1016/S0273-1177(97)00915-0http://dx.doi.org/10.1016/S0273-1177(97)00915-0]
Smith W L. 2009. Evolution, current capabilities, and advances in satellite ultra‐spectral IR sounding. AIP Conference Proceedings, 1100(1): 335-338 [DOI: 10.1063/1.3116985http://dx.doi.org/10.1063/1.3116985]
Ulaby F. 2018. Introduction to satellite remote sensing: Atmosphere, ocean, land, and cryosphere applications [Book Review]. IEEE Geoscience and Remote Sensing Magazine, 6(4): 109-110 [DOI: 10.1109/MGRS.2018.2873040http://dx.doi.org/10.1109/MGRS.2018.2873040]
Wang H M, Li X Y, Xu J, Zhang X Y, Ge S L, Chen L F, Wang Y P, Zhu S Y, Miao J and Si Y D. 2018. Assessment of retrieved N2O, NO2, and HF profiles from the Atmospheric Infrared Ultraspectral Sounder based on simulated spectra. Sensors, 18(7): 2209 [DOI: 10.3390/s18072209http://dx.doi.org/10.3390/s18072209]
Wang Y P. 2017. Research on Temperature/Pressure and Ozone Retrieval Algorithm based on Atmospheric Infrared Ultraspectral Spectrometer. Beijing: University of Chinese Academy of Sciences
王雅鹏. 2017. 大气红外甚高分辨率掩星探测仪温压及臭氧廓线反演算法研究. 北京: 中国科学院大学
Worden J, Kulawik S S, Shephard M W, Clough S A, Worden H, Bowman K and Goldman A. 2004. Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection. Journal of Geophysical Research: Atmospheres, 109(D9): D09308 [DOI: 10.1029/2004JD004522http://dx.doi.org/10.1029/2004JD004522]
Worden J, Kulawik S, Frankenberg C, Payne V, Bowman K, Cady-Peirara K, Wecht K, Lee J E and Noone D. 2012. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances. Atmospheric Measurement Techniques, 5(2): 397-411 [DOI: 10.5194/amt-5-397-2012http://dx.doi.org/10.5194/amt-5-397-2012]
Wu X, Dai C M, Wei H L and Miao X K. 2018. Channel selection of high-spectral resolution interferometer sounder for use in temperature retrieval//Proceedings of SPIE10697, Fourth Seminar on Novel Optoelectronic Detection Technology and Application. Nanjing: SPIE [DOI: 10.1117/12.2315473http://dx.doi.org/10.1117/12.2315473]
Zhang Y, Chen L F, Tao J H, Su L, Yu C and Fan M. 2012. Retrieval of methane profiles from spaceborne hyperspectral infrared observations. Journal of Remote Sensing, 16(2):232-247.
张莹,陈良富,陶金花,苏林,余超,范萌.2012.利用卫星红外高光谱资料反演大气甲烷浓度垂直廓线.遥感学报,16(2):232-247 [DOI: 10.11834/jrs.20121051http://dx.doi.org/10.11834/jrs.20121051]
相关作者
相关机构