遥感反演和站点观测的地气温度分布特征差异
Difference of temperature distribution characteristics based on remote sensing and meteorological station temperature data
- 2021年25卷第8期 页码:1848-1861
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20211233
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
王念,卢致宇,徐建红,张红,张霄羽.2021.遥感反演和站点观测的地气温度分布特征差异.遥感学报,25(8): 1848-1861
Wang N,Lu Z Y,Xu J H,Zhang H and Zhang X Y. 2021. Difference of temperature distribution characteristics based on remote sensing and meteorological station temperature data. National Remote Sensing Bulletin, 25(8):1848-1861
地表温度和近地表大气温度是地球系统、大气系统以及地—气相互作用物理过程的重要参量。在陆地—大气的相互作用过程中,水汽含量、NDVI指数、下垫面变化等因素会对地—气热量传输造成一定的影响。本文首先利用地表温度产品(MYD11A1)以及气温站点数据(GSOD)获得全国尺度下地表温度年最大值、近地面气温年最大值。在此基础上,使用趋势分析法分析2003年—2018年地、气温度年最大值时空分布特征及变化趋势,以及地—气温差气候倾向率变化趋势。最后,结合大气总水汽含量产品(MYD05)、NDVI指数(MYD13A3)、二氧化碳平均浓度增长率分析导致地表温度年最大值与近地面气温年最大值趋势发生变化的原因。研究结果表明:(1)在全国尺度下,2003年—2018年地表温度年最大值呈现北高南低的空间分布特征。近地面气温年最大值的空间分布与地表温度年最大值相反。大气总水汽含量年最大值在热带、亚热带季风气候区内总体较高。水汽含量既影响近地面气温的大小,同时也受到近地面气温的影响,因此,水汽含量年最大值与近地面气温年最大值表现出一定的空间分布一致性特征。(2)在2003年—2018年期间,地表温度年最大值的气候倾向率在空间上表现出北高南低的分布特征。近地面气温年最大值的气候倾向率在空间上也表现为北高南低,与地表温度年最大值的气候倾向率变化基本一致。但地表温度年最大值的变化幅度要大于近地面气温年最大值,并且在个别区域表现不一致。主要分布在天山地区、三江平原以及秦岭南侧地区,地—气年最大值变化趋势相反即地—气差减小。(3)大气总水汽含量年最大值的增加可造成近地面气温年最大值的增加,而植被覆盖度的上升可造成地表温度年最大值下降。但在天山地区大气总水汽含量与地—气差的响应不明显,但天山地区的近地面气温年最大值与CO
2
平均浓度增长率的关系较为明显。(4)遥感数据反演的地表温度年最大值和站点观测的近地面气温年最大值空间分布表现出差异,但时间变化趋势基本一致。
Land Surface Temperature (LST) and Air Temperature (AT) are important parameters of land-atmosphere interaction system. In the process of land-atmosphere interaction
Water Vapor Content (WVC)
NDVI index
carbon dioxide concentration and other factors will have great impact on land-atmosphere heat transfer. Therefore
we investigate the spatiotemporal variation trend of annual maximum of LST(AMLST) and annual maximum of AT(AMAT) from different data source including remote sensing and meteorological station in China in recent 20 years.The trend analysis method is used to analyze the spatiotemporal variation trend of AMLST and AMAT from 2003 to 2018. Combined with the annual maximum of WVC(AMWVC) and NDVI index
the driving factors leading to the variation of AMLST and AMAT were analyzed.
The results showed that
:
(1) The spatial distribution characteristics of AMLST in China from 2003 to 2018 is higher in the north and lower in the south
and the highest AMLST appears in Turpan Basin
Xinjiang. The spatial distribution of AMAT in China is higher in the south and lower in the north. In virtue of interaction between AMWVC and AMAT
the two impact factors appear a certain coincident characteristics. (2) During the period of 2003-2018
the spatial distribution of climate inclination rate of AMLST is higher in the north and lower in the south
the AMAT climate inclination rate have the same characteristics with AMLST. From the perspective of variation range
the AMLST is larger than that of AMAT. But it is inconsonant in Tianshan Mountains
Sanjiang Plain and the south side of Qinling Mountains. (3) The increase in AMWVC makes the AMAT rise
while the increase of vegetation coverage can decrease the AMLST. In the Tianshan area
the response of AMLST-AMAT interaction system to the AMWVC is not obvious
but the relationship between AMAT and the growth rate of carbon dioxide concentration is obvious. (4) The spatial distribution of the AMLST retrieved from remote sensing data is different from that observed by stations
but the temporal variation trend is basically the same.
地表温度年最大值近地表温度年最大值水汽含量年最大值NDVI指数气候倾向率
annual maximum surface temperatureannual maximum air surface temperaturewater vapor contentNDVI indexclimate tendency rate
Chang S T, Liu Y Z, Hua S and Jia R. 2019. Characteristics of atmospheric water vapor over the Qinghai-Tibetan Plateau in summer with global warming. Plateau Meteorology, 38(2): 227-236
常姝婷, 刘玉芝, 华珊, 贾瑞. 2019. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征. 高原气象, 38(2): 227-236 [DOI: 10.7522/j.issn.1000-0534.2018.00080http://dx.doi.org/10.7522/j.issn.1000-0534.2018.00080]
Chichirez C M, Cîmpeanu M S and Marin D I. 2013. Variability of Soil Surface Temperature in the Câmpulung Muscel depression (Argeş-Romania). AgroLife Scientific Journal, 2(1): 52-57
Chudinova S M, Frauenfeld O W, Barry R G, Zhang T J and Sorokovikov V A. 2006. Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. Journal of Geography Research: Earth Surface, 111: F02008 [DOI: 10.1029/2005JF000342http://dx.doi.org/10.1029/2005JF000342]
Duan A M, Xiao Z X and Wu G X. 2016. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979-2014. Climate Change Research, 12(5): 374-381
段安民, 肖志祥, 吴国雄. 2016. 1979—2014年全球变暖背景下青藏高原气候变化特征. 气候变化研究进展, 12(5): 374-381 [DOI: 10.12006/j.issn.1673-1719.2016.039http://dx.doi.org/10.12006/j.issn.1673-1719.2016.039]
Duan S B, Li Z L, Li H, Göttsche FM, Wu Hua, Zhao wei, Leng Pei, Zhang Xia and Coll César. 2019. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment. [DOI:10.1016/j.rse.2019.02.020http://dx.doi.org/10.1016/j.rse.2019.02.020]
Duan S B, Ru C, Li Z L, Wang M M, Xu H Q, Li H, Wu P H, Zhan W F, Zhou J, Zhao W, Ren H Z, Wu H, Tang B H, Zhang X, Shang Guo F and Qin Z H. 2021. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. National Remote Sensing Bulletin, 25(8): 1591-1617
段四波, 茹晨, 李召良, 王猛猛, 徐涵秋, 历华, 吴鹏海, 占文凤, 周纪, 赵伟, 任华忠, 吴骅, 唐伯惠, 张霞, 尚国琲, 覃志豪. 2021. Landsat卫星热红外数据地表温度遥感反演研究进展. 遥感学报, 25(8): 1591-1617 [DOI: 10.11834/jrs.20211296http://dx.doi.org/10.11834/jrs.20211296]
Fu C B, Dan L, Feng J M, Peng J and Ying N. 2018. Temporal and spatial heterogeneous distribution of tropospheric CO2 over China and its possible genesis. Chinese Journal of geophysics, 61(11): 4373-4382
符传博, 丹利, 冯锦明, 彭静, 营娜. 2018. 我国对流层二氧化碳非均匀动态分布特征及其成因. 地球物理学报, 61(11): 4373-4382 [DOI:10.6038/cjg2018L0266http://dx.doi.org/10.6038/cjg2018L0266]
Gu X P, Wang X M, Wu Z P and Tian P J. 2009. Retrieval of atmospheric water vapor using MODIS near infrared channel data in Guizhou Plateau. Plateau Meteorology, 28(2): 446-451
谷晓平, 王新明, 吴战平, 田鹏举. 2009. 基于MODIS近红外数据的贵州高原大气水汽反演研究. 高原气象, 28(2): 446-451 [DOI: CNKI: SUN: GYQX.O.2009-02-024http://dx.doi.org/CNKI:SUN:GYQX.O.2009-02-024]
Gao X Q. 2013. Comparison of Response of Ground Temperature and Air Temperature to Climate Change in Shouguang City. Anhui Agricultural Science Bulletin, 19(19):137-139
高学芹. 2013. 寿光市地温与气温对气候变化的响应比较. 安徽农学通报, 19(19): 137-139 [DOI:10.16377/j.cnki.issn1007-7731.201 3.19.005http://dx.doi.org/10.16377/j.cnki.issn1007-7731.2013.19.005]
Gao Z Q, Ning J C and Gao W. 2009. Response ofland surface temperature to coastal land use cover change by remote sensing. Transactions of the CSAE, 25(09): 274-281
高志强, 宁吉才, 高炜. 基于遥感的沿海土地利用变化及地表温度响应. 农业工程学报, 25(09): 274-281 [DOI:10.3969/j.issn.1007-773 1.2013.19.070http://dx.doi.org/10.3969/j.issn.1007-7731.2013.19.070]
Guo Y J and Ding Y H. 2014. Upper-Air Specific Humidity Change over China during 1958-2005. Chinese Journal of Atmospheric Sciences, (1): 1-12 (郭艳君, 丁一汇. 2014. 1958-2005年中国高空大气比湿变化. 大气科学, (1): 1-12) [DOI:CNKI:SUN:DQXK.0.2014-01-001]
Huang B W. 1958. Preliminary draft of China's comprehensive natural regionalization.Journal of Geographical Sciences, (4): 348-365. (黄秉维. 中国综合自然区划的初步草案. 地理学报, (4): 348-365) [DOI:CNKI:SUN:DLXB.0.1958-04-004http://dx.doi.org/CNKI:SUN:DLXB.0.1958-04-004]
Ji R. 2018. Temporal and Spatial Variation of Surface Temperature and Influencing Factors Analysis in Liaoning Province from 1960 to 2016. Dalian: Liaoning Normal University
纪然. 2018. 1960-2016年辽宁省地表温度时空变化特征及影响因素分析. 大连: 辽宁师范大学
Jiang H F, Liao S H, Erike and Apar. 2004. Statistical analysis on relationship between soil surface temperature and air temperature. Chinese Journal of Agrometeorology, 25(3): 1-4
姜会飞, 廖树华, 叶尔克江, 阿帕尔. 2004. 地面温度与气温关系的统计分析. 中国农业气象, 25(3): 1-4 [DOI: 10.3969/j.issn.1000-6362.2004.03.001http://dx.doi.org/10.3969/j.issn.1000-6362.2004.03.001]
Kafy A A, Faisal A A, Shuvo R M, Naim M N H, Sikdar M S, Chowdhury R R, Islam M A, Sarker M H S, Khan M H H and Kona M A. 2021. Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. Remote Sensing Applications: Society and Environment, 21: 100463 [DOI: 10.1016/j.rsase.2020.100463http://dx.doi.org/10.1016/j.rsase.2020.100463]
Li T, Lü Y H, Ren Y J and Li P F. 2020. Gauging the effectiveness of vegetation restoration and the influence factors in the Loess Plateau. Acta Ecologica Sinica, 40(23): 8593-8605
李婷, 吕一河, 任艳姣, 李朋飞. 2020. 黄土高原植被恢复成效及影响因素. 生态学报, 40(23): 8593-8605 [DOI: 10.5846/stxb202001080065http://dx.doi.org/10.5846/stxb202001080065]
Li Y H and Zhou Y L. 2019. Analysis of a regional rainstorm in Laiyang from August 19 to 20, 2018.
Journal of Agricultural Catastrophology, 9(6): 77-79 李永华, 周彦玲. 2019. 2018年8月19
-20日莱阳一次区域性大暴雨天气过程分析. 农业灾害研究, 9(6): 77-79 [DOI: 10.19383/j.cnki.nyzhyj.2019.06.028http://dx.doi.org/10.19383/j.cnki.nyzhyj.2019.06.028]
Liang S L, Chen X N, Cheng J, Fan W J, He T, Jia K, Jiang B, Jiang L M, Liu Y B, Ni W J, Qiu F, Song L L, Sun l, Tang B H, Wen J G, Wu G P, Xie D H, Yao Y J, Yuan W P, Zhang Y G, Zhang Y Z, Zhang Y T, Zhang X T, Zhao T J and Zhao X. 2020. Review of China's land surface quantitative remote sensing development in 2019, 24(06):618-671
梁顺林, 白瑞, 陈晓娜, 程洁, 范闻捷, 何涛, 贾坤, 江波, 蒋玲梅, 焦子锑, 刘元波, 倪文俭, 邱凤, 宋柳霖, 孙林, 唐伯惠, 闻建光, 吴桂平, 谢东辉, 姚云军, 袁文平, 张永光, 张玉珍, 张云腾, 张晓通, 赵天杰, 赵祥. 2020. 2019年中国陆表定量遥感发展综述, 遥感学报, 24(06): 618-671
Liu C, Li H, Du Y M, Cao B, Liu Q H, Meng X C and Hu Y J. 2017. Practical split-window algorithm for retrieving land surface temperature from Himawari 8 AHI data, 21(05):702-714
刘超, 历华, 杜永明, 曹彪, 柳钦火, 孟翔晨, 胡友健. 20217. Himawari 8 AHI数据地表温度反演的实用劈窗算法. 遥感学报, 21(05): 702-714
Liu J, Hagan D F T and Liu Y. 2020. Global land surface temperature change (2003-2017) and its relationship with climate drivers: AIRS, MODIS, and ERA5-land based analysis. Remote Sensing, 13(1): 44 [DOI: 10.3390/rs13010044http://dx.doi.org/10.3390/rs13010044]
Liu X F, Ren Z Y, Lin Z H, Liu Y X and Zhang D H. 2013. The spatial-temporal changes of vegetation coverage in the Three-River Headwater Region in recent 12 years. Acta Geographica Sinica, 68(7): 897-908
刘宪锋, 任志远, 林志慧, 刘焱序, 张东海. 2013. 2000-2011年三江源区植被覆盖时空变化特征. 地理学报, 68(7): 897-908 [DOI: CNKI: SUN: ZGDE.O.2014-02-007http://dx.doi.org/CNKI:SUN:ZGDE.O.2014-02-007]
Lu X B, Xu H M, Sun C H and He J H. 2006. Characteristics of soil temperature variations in China in recent 50 years. Journal of Nanjing Institute of Meteorology, 29(5): 706-712
陆晓波, 徐海明, 孙丞虎, 何金海. 2006. 中国近50 a地温的变化特征. 南京气象学院学报, 29(5): 706-712 [DOI: 10.3969/j.issn.1674-7097.2006.05.019http://dx.doi.org/10.3969/j.issn.1674-7097.2006.05.019]
Li H, Li R, Yang Y k, Cao B, Bian Z J, Hu T, Du Y M, Lin S and Liu Q H. 2021. Temperature-based and Radiancebased Validation of the Collection 6 MYD11 and MYD21 Land Surface Temperature Products Over Barren Surfaces in Northwestern China. IEEE Transactions on Geoscience and Remote Sensing. [DOI:10.1109/tgrs.2020.2998945http://dx.doi.org/10.1109/tgrs.2020.2998945]
Li M, Sun H Q and Su Z C. 2021. Research progress in dry/wet climate variation in Northwest China. Geographical Research, 40(04): 1180-1194
李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展. 地理研究, 40(04): 1180-1194 [DOI:10.11821/d lyj020200328http://dx.doi.org/10.11821/dlyj020200328]
Ma J H, Liu Y, Yang X G, Wang W F, Xue C Y and Zhang X Y. 2010. Characteristics of climate resources under global climate change in the North China Plain. Acta Ecologica Sinica, 30(14): 3818-3827
马洁华, 刘园, 杨晓光, 王文峰, 薛昌颖, 张晓煜. 2010. 全球气候变化背景下华北平原气候资源变化趋势. 生态学报, 30(14): 3818-3827 [DOI: CNKI: SUN: STXB.O.2010-14-021http://dx.doi.org/CNKI:SUN:STXB.O.2010-14-021]
Mu Y T, Liu Z Q, Li Y and Zhu D Y. 2021. Characteristics of soil temperature variation in karst area and its relationship with environmental factors. Acta Ecologica Sinica, 41(07): /2738-2749
母娅霆, 刘子琦, 李渊, 朱大运. 喀斯特地区土壤温度变化特征及其与环境因子的关系. 生态学报, 2021, 41(07): 2738-2749 [DOI:10.5846/stxb201911102370http://dx.doi.org/10.5846/stxb201911102370]
Mildrexler D J, Zhao M S and Running S W. 2006. Where are the hottest spots on Earth?. American Geophysical Union, 87(43): 461-467. [DOI:10.1029/2006EO430002http://dx.doi.org/10.1029/2006EO430002]
Qiu B J. 1986. Mr. Zhu is divided with China’s climate zone. Journal of Southwest Normal University (Natural Science Edition) (丘宝剑. 1986. 竺可桢先生与中国气候区划. 西南师范大学学 报(自然科学版), (3): 79-84) [DOI:10.13718/j.cnki.xsxb.1986.03. 012]
Song T, Duan Z, Liu J Z, Shi J Z, Yan F, Sheng S J, Huang J and Wu W. 2015. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite. Journal of Remote Sensing, 19(3): 451-464
宋挺, 段峥, 刘军志, 石浚哲, 严飞, 盛世杰, 黄君, 吴蔚. 2015. Landsat 8数据地表温度反演算法对比. 遥感学报, 19(3): 451-464 [DOI: 10.11834/jrs.20154180http://dx.doi.org/10.11834/jrs.20154180]
Su J Z, Wen M, Ding Y H, Gao Y Q and Song Y F. 2016. Hiatus of Global Warming: A Review. Chinese Journal of Atmospheric Sciences, 40(06):1143-1153
苏京志, 温敏, 丁一汇, 郜永祺, 宋亚芳. 2016. 全球变暖趋缓研究进展. 大气科学, 40(06): 1143-1153 [DOI:10.3878/j.issn.1006-9895.1512.15242http://dx.doi.org/10.3878/j.issn.1006-9895.1512.15242]
Secretariat I. 2012. Summary for policymakers of the synthesis report of the IPCC fourth assessment report. Ipcc Secretariat. [DOI:http://apo.org.au/node/1622http://dx.doi.org/http://apo.org.au/node/1622]
Wang L P, Duan S B, Zhang X Y and Yu Y R. 2021. Spatio-temporal distribution and variation characteristics of annual maximum land surface temperature in China during 2003-2018. Arid Land Geography, 1-13
王丽平, 段四波, 张霄羽, 于艳茹. 2003-2018年中国地表温度年最大值的时空分布及变化特征. 干旱区地理. 1-13 http://kns.cnki.net/kcms/detail/65.1103.X.20210511.0936.004.htmlhttp://kns.cnki.net/kcms/detail/65.1103.X.20210511.0936.004.html.
Wang W J, Yan J P, Liu Y L and Cao Y W. 2016. Climate change and drought-flood disasters responses in South China. Journal of East China Normal University (Natural Science), (2): 81-89
王文静, 延军平, 刘永林, 曹永旺. 2016. 华南地区气候变化与旱涝灾害响应关系. 华东师范大学学报(自然科学版), (2): 81-89 [DOI: 10.3969/j.issn.1000-5641.2016.02.011]
Xu H Q. 2015. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite. Chinese Journal of Geophysics, 58(3): 741-747
徐涵秋. 2015. 新型Landsat8卫星影像的反射率和地表温度反演. 地球物理学报, 58(3): 741-747 [DOI: 10.6038/cjg20150304http://dx.doi.org/10.6038/cjg20150304]
Xu Y, Huang W T, Jing J L, Zhang Z Y, Li M J, Ou Y X, Lu M Y and Dou S Q. 2020. Dynamic variation of vegetation cover and its relation with climate variables in Beijing-Tianjin-Hebei region. Bulletin of Soil and Water Conservation, 40(5): 319-327
徐勇, 黄雯婷, 靖娟利, 张占奕, 李明杰, 欧昱贤, 卢梦缘, 窦世卿. 2020. 京津冀地区植被NDVI动态变化及其与气候因子的关系. 水土保持通报, 40(5): 319-327 [DOI: 10.13961/j.cnki.stbctb.2020.05.045http://dx.doi.org/10.13961/j.cnki.stbctb.2020.05.045]
Yang L P, Li D, Qin Y, Zhang C H, Vishnyakova O and Lü D B. 2016. Variation characteristics of air temperature and ground temperature and their correlation in Xilinguole grassland during growing season from 1960 to 2014. Journal of Arid Meteorology, 34(4): 617-622
杨丽萍, 李丹, 秦艳, 张存厚, Vishnyakova O, 吕迪波. 2016. 锡林郭勒草原生长季地—气温度变化特征及相关性. 干旱气象, 34(4): 617-622) [DOI: 10.11755/j.issn.1006-7639(2016-04-0617]
Yi H Y, Liu J, Sun W Y, Dai Z Q, Yan M and Ning L. 2021. Study on the characteristics and mechanisms of temperature change over the Northern Hemisphere in the typical warm periods during the past 2000 years. Quaternary Sciences, 41(2): 497-509
易慧郁, 刘健, 孙炜毅, 戴张奇, 严蜜, 宁亮. 2021. 过去2000年典型暖期北半球温度变化特征及成因分析. 第四纪研究, 41(2): 497-509 [DOI: 10.11928/j.issn.1001-7410.2021.02.17http://dx.doi.org/10.11928/j.issn.1001-7410.2021.02.17]
Yu X J, Qu C X and Liu H J. 2010. Spatial pattern analysis of farmland ground temperature in black soil area of Heilongjiang Province. The 1h China remote sensing Conference. (于晓静, 曲长祥, 刘焕军. 2010. 黑龙江省黑土区农田地温空间格局分析. 第一届中国遥感大会. 2010)
Yu Y R, Duan S B, Li Z L, Chang S, Xing Z F, Leng P and Gao M F. 2021. Interannual Spatiotemporal Variations of Land Surface Temperature in China From 2003 to 2018. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, PP(99): 1-1.
1109/JSTARS.2020.3048823
Yue J, Mu G J, Tang Z H, Yang X F, Lin Y C and Xu L S. 2020. Study on the Empirical Model of Vegetation Coverage Estimation in Desert Area of Xinjiang Based on NDVI. Arid Land Geography, 43(1): 153-160
岳健, 穆桂金, 唐自华, 杨雪峰, 林永崇, 徐立帅. 2020. 基于NDVI的新疆荒漠地区植被覆盖度遥感估算经验模型研究. 干旱区地理, 43(1): 153-160 [DOI:10.12118/j.issn.1000-6060.2020.01.18http://dx.doi.org/10.12118/j.issn.1000-6060.2020.01.18]
Zhang T, Barry R G, Gilichinsky D, Bykhovets S S, Sorokovikov V A and Ye J P. 2001. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Climatic Change, 49(1): 41-76 [DOI: 10.1023/A:1010790203146http://dx.doi.org/10.1023/A:1010790203146]
Zhang X P and Yao T D. 1996. Temperature variations at the surface and 500 hPa in Xining and Tuotuohe regions. Journal of Glaciology and Geocryology, 18(1): 20-28
章新平, 姚檀栋. 1996. 西宁和沱沱河地区近地面及500 hPa温度变化的对比分析. 冰川冻土, 18(1): 20-28
Zhao E R, Jian M Q and Li C H. 2018. Interdecadal change of the seasonal evolution of rainfall over South China. Journal of Tropical Meteorology, 34(3): 360-370
赵恩榕, 简茂球, 李春晖. 2018. 华南降水季节演变的年代际变化. 热带气象学报, 34(3): 360-370 [DOI: 10.16032/j.issn.1004-4965.2018.03.010http://dx.doi.org/10.16032/j.issn.1004-4965.2018.03.010]
相关文章
相关作者
相关机构