高光谱红外传感器在轨光谱定标
Research on on-orbit spectral calibration method of hyperspectral infrared sensor
- 2021年25卷第8期 页码:1618-1632
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20211282
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
马晨阳,钱永刚,李坤,王宁,马灵玲,邱实,高彩霞,李传荣.2021.高光谱红外传感器在轨光谱定标.遥感学报,25(8): 1618-1632
Ma C Y,Qian Y G,Li K,Wang N,Ma L L,Qiu S,Gao C X and Li C R. 2021. Research on on-orbit spectral calibration method of hyperspectral infrared sensor. National Remote Sensing Bulletin, 25(8):1618-1632
高光谱红外传感器高精度在轨光谱定标是红外遥感定量反演及应用的重要前提。本文针对大气红外探测仪AIRS(Atmospheric Infrared Sounder)的观测数据,分析传感器等效入瞳亮温与大气透过率光谱中的吸收线特征,基于NODD和包络线去除的光谱归一化处理,融合多种光谱匹配算法构建非线性代价函数,提出了一种无需地表实测数据支持的高光谱红外传感器光谱定标方法。与JPL官方定标结果相比,中心频率定标精度优于0.0154 cm
-1
,中心频率及半峰全宽的偏移量分别在±0.02 cm
-1
及±0.1 cm
-1
以内,相对偏移量分别在0.2%—1.9%与0.5%—12.0%。最后,本文详细分析了大气上行辐射、下垫面类型及空间采样点数量对定标算法的影响。
During the entire operating life of a spaceborne sensor
the sensor’s spectral capability would be affected by optical device displacement
mechanical vibration
space environmental rays
etc. As a means to determine the spectral performance parameters of infrared hyperspectral sensors
high precision on-orbit spectral calibration is an essential prerequisite for quantitative remote sensing retrieval and application. Therefore
a fast and efficient spectral calibration method for hyperspectral mid-infrared and thermal infrared sensors needs to be constructed.
In this paper
we established a spectral calibration method to retrieve the array centroid and Full Width at Half Maximum (FWHM) simultaneously in the absence of surface measurements. The method is mainly based on the atmospheric absorption line’s characteristics of the on-orbit effective brightness temperature (without the influence of atmospheric upward radiance) and the atmospheric transmittance spectrum
meanwhile
the spectral performance parameters were calibrated using a cost function composed of multiple spectrum matching algorithms. Before spectrum matching
it is necessary to perform Normalized Optical Depth Derivative (NODD) and continuum removal on the spectrum data.
The Atmospheric Infrared Sounder (AIRS) spectral calibration results shown that the calibration accuracy of centroid frequency is better than 0.0154 cm
-1
besides
the shift of centroid and FWHM are within ±0.02 cm
-1
and ±0.1 cm
-1
respectively. In other words
the centroid frequency and FWHM fluctuate within the 0.2%—1.9% and 0.5%—12.0% mean value of an array declared FWHM.
This study demonstrated the utility of this method which can determine the mid-infrared and thermal infrared array spectral status change with high accuracy and stability. At the same time
we analyzed the sensitivity of this calibration method to atmospheric upward radiance
surface type
and the number of sampling points. The results confirmed that the influence of surface types on calibration accuracy is tolerable. Moreover
when the upward atmospheric radiance is accurately eliminated and the number of spatial sampling points is greater than 20
the spectral calibration result is reliable.
光谱定标中心频率FWHM光谱匹配逐步精化AIRS
spectral calibrationcentroid frequencyFWHMspectral matchingstepwise refinementAIRS
Aumann H H, Gregorich D T, Gaiser S L and Chahine M T. 2004. Application of Atmospheric Infrared Sounder (AIRS) data to climate research//Proceedings Volume 5570, Sensors, Systems, and Next-Generation Satellites VIII. Maspalomas, Canary Islands, Spain: SPIE [DOI: 10.1117/12.565712http://dx.doi.org/10.1117/12.565712]
Blumstein D Chalon G, Carlier T, Buil C, Hebert P, Maciaszek T, Ponce G, Phulpin T, Tournier B, Simeoni D, Astruc P, Clauss A, Kayal G and Jegou R. 2004. IASI instrument: technical overview and measured performances//Proceedings Volume 5543, Infrared Spaceborne Remote Sensing XII. Denver, Colorado, United States: SPIE [DOI: 10.1117/12.560907http://dx.doi.org/10.1117/12.560907]
Brazile J, Neville R A, Staenz K, Schläpfer D, Sun L X and Itten K I. 2008. Toward scene-based retrieval of spectral response functions for hyperspectral imagers using Fraunhofer features. Canadian Journal of Remote Sensing, 34(S1): S43-S58 [DOI: 10.5589/m07-069http://dx.doi.org/10.5589/m07-069]
Cheng J, Liu Q H and Li X W. 2007. Review of trace gases inversion utilizing space-borne hyperspectral infrared remote sensor data. Remote Sensing Information, (2): 90-97
程洁, 柳钦火, 李小文. 2007. 星载高光谱红外传感器反演大气痕量气体综述. 遥感信息, (2): 90-97 [DOI: 10.3969/j.issn.1000-3177.2007.02.021]
Duan S B, Ru C, Li Z L, Wang M M, Xu H Q, Li H, Wu P H, Zhan W F, Zhou J, Zhao W, Ren H Z, Wu H, Tang B H, Zhang X, Shang Guo F and Qin Z H. 2021. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. National Remote Sensing Bulletin, 25(8): 1591-1617
段四波, 茹晨, 李召良, 王猛猛, 徐涵秋, 历华, 吴鹏海, 占文凤, 周纪, 赵伟, 任华忠, 吴骅, 唐伯惠, 张霞, 尚国琲, 覃志豪. 2021. Landsat卫星热红外数据地表温度遥感反演研究进展. 遥感学报, 25(8):1591-1617 [DOI:10.11834/jrs.20211296http://dx.doi.org/10.11834/jrs.20211296]
Feng X, Li L B, Chen B Y, Zou Y P and Han C P. 2019. Post-launch calibration and validation of the Geostationary Interferometric Infrared Sounder (GIIRS) on FY-4A. Journal of Infrared and Millimeter Waves, 38(5): 648-654
冯绚, 李利兵, 陈博洋, 邹曜璞, 韩昌佩. 2019. 风云四号A星干涉式大气垂直探测仪在轨定标及性能评价. 红外与毫米波学报, 38(5): 648-654 [DOI: 10.11972/j.issn.1001-9014.2019.05.016http://dx.doi.org/10.11972/j.issn.1001-9014.2019.05.016]
Fourri'e N and Thépaut J. 2003. Evaluation of the AIRS near-real-time channel selection for application to numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 129(592): 2425-2439 [DOI: 10.1256/qj.02.210http://dx.doi.org/10.1256/qj.02.210]
Gaiser S L, Aumann H H, Strow L L, Hannon S E and Weiler M. 2003. In-flight spectral calibration of the atmospheric infrared sounder. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 287-297 [DOI: 10.1109/TGRS.2003.809708http://dx.doi.org/10.1109/TGRS.2003.809708]
Gao B C, Montes M J and Davis C O. 2004. Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique. Remote Sensing of Environment, 90(4): 424-433 [DOI: 10.1016/j.rse.2003.09.002http://dx.doi.org/10.1016/j.rse.2003.09.002]
Gao H L, Gu X F, Yu T, Xie Y, Sun Y and Zheng F J. 2014. In-flight spectral calibration of oxygen absorption channels of hyperspectral sensor. Acta Photonica Sinica, 43(10): 1028001
高海亮, 顾行发, 余涛, 谢勇, 孙源, 郑逢杰. 2014. 氧气吸收通道的高光谱传感器在轨光谱定标. 光子学报, 43(10): 1028001 [DOI: 10.3788/gzxb20144310.1028001http://dx.doi.org/10.3788/gzxb20144310.1028001]
Green R O. 1998. Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum. Applied Optics, 37(4): 683-690 [DOI: 10.1364/AO.37.000683http://dx.doi.org/10.1364/AO.37.000683]
Green R O, Pavri B E and Chrien T G. 2003. On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1194-1203 [DOI: 10.1109/TGRS.2003.813204http://dx.doi.org/10.1109/TGRS.2003.813204]
Guanter L, Richter R and Moreno J. 2006. Spectral calibration of hyperspectral imagery using atmospheric absorption features. Applied Optics, 45(10): 2360-2370 [DOI: 10.1364/AO.45.002360http://dx.doi.org/10.1364/AO.45.002360]
Kodaz H, Özşen S, Arslan A and Güneş S. 2009. Medical application of information gain based artificial immune recognition system (AIRS): diagnosis of thyroid disease. Expert Systems with Applications, 36(2): 3086-3092 [DOI: 10.1016/j.eswa.2008.01.026http://dx.doi.org/10.1016/j.eswa.2008.01.026]
Le Marshall J, Jung J, Zapotocny T, Derber J, Treadon R, Lord S, Goldberg M and Wolf W. 2006. The application of AIRS radiances in numerical weather prediction. Australian Meteorological Magazine, 55(3): 213-217
Li Z F, Wang S R, Huang Y and Yu X Y. 2013. Research on high-accuracy in-flight spectral calibration of the solar backscattered ultraviolet spectroradiometer. Acta Optica Sinica, 33(2): 0228002
李占峰, 王淑荣, 黄煜, 于向阳. 2013. 紫外臭氧垂直探测仪高精度在轨光谱定标方法研究. 光学学报, 33(2): 0228002 [DOI: 10.3788/AOS201333.0228002http://dx.doi.org/10.3788/AOS201333.0228002]
Neville R A, Sun L X and Staenz K. 2003. Detection of spectral line curvature in imaging spectrometer data//Proceedings Volume 5093, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX. Orlando, Florida, United States: SPIE [DOI: 10.1117/12.487342http://dx.doi.org/10.1117/12.487342]
Strow L L, Motteler H, Tobin D, Revercomb H, Hannon S, Buijs H, Predina J, Suwinski L and Glumb R. 2013. Spectral calibration and validation of the Cross-track Infrared Sounder on the Suomi NPP satellite. Journal of Geophysical Research: Atmospheres, 118(22): 12486-12496 [DOI: 10.1002/2013JD020480http://dx.doi.org/10.1002/2013JD020480]
Tobin D C, Revercomb H E, Knuteson R O, Lesht B M, Strow L L, Hannon S E, Feltz W F, Moy L A, Fetzer E J and Cress T S. 2006. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. Journal of Geophysical Research: Atmospheres, 111(D9): D09S14 [DOI: 10.1029/2005JD006103http://dx.doi.org/10.1029/2005JD006103]
Wang T X, Yan G J, Ren H Z and Mu X H. 2010. Retrieval of spectral characteristics of hyperspectral sensor and retrieval of reflectance spectra. Spectroscopy and Spectral Analysis, 30(10): 2714-2718
王天星, 阎广建, 任华忠, 穆西晗. 2010. 高光谱传感器光谱性能参数反演与反射率恢复. 光谱学与光谱分析, 30(10): 2714-2718) [DOI: 10.3964/j.issn.1000-0593(201010-2714-05http://dx.doi.org/10.3964/j.issn.1000-0593(2010)10-2714-05]
Wang T X, Yan G J, Ren H Z and Mu X H. 2010. Improved methods for spectral calibration of on-orbit imaging spectrometers. IEEE Transactions on Geoscience and Remote Sensing, 48(11): 3924-3931 [DOI: 10.1109/TGRS.2010.2067220http://dx.doi.org/10.1109/TGRS.2010.2067220]
Wu H, Li X J, Li Z L, Duan S B and Qian Y G. 2021. Hyperspectral thermal infrared remote sensing:current status and perspectives. National Remote Sensing Bulletin, 25(8):1567-1590
吴骅,李秀娟, 李召良, 段四波, 钱永刚. 2021. 高光谱热红外遥感: 现状与展望. 遥感学报, 25(8): 1567-1590 [DOI: 10.11834/jrs.20211306http://dx.doi.org/10.11834/jrs.20211306]
Zhu J S, Ren H Z, Ye X, Zeng H, Nie J, Jiang C C and Guo J X. 2021. Ground validation of land surface temperature and surface emissivity from thermal infrared remote sensing data:A review. National Remote Sensing Bulletin, 25(8): 1538-1566
朱金顺, 任华忠, 叶昕, 曾晖, 聂婧, 蒋晨琛, 郭金鑫. 2021. 热红外遥感地表温度与发射率地面验证进展. 遥感学报, 25(8): 1538-1566 [DOI: 10.11834/jrs.20211299http://dx.doi.org/10.11834/jrs.20211299]
相关作者
相关机构