藏东南冰川地区250 m空间分辨率全天候地表温度生成
Toward the method for generating 250-m all-weather land surface temperature for glacier regions in Southeast Tibet
- 2021年25卷第8期 页码:1873-1888
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20211304
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
黄志明,周纪,丁利荣,张入财,张晓东,马晋.2021.藏东南冰川地区250 m空间分辨率全天候地表温度生成.遥感学报,25(8): 1873-1888
Huang Z M,Zhou J,Ding L R,Zhang R C,Zhang X D and Ma J. 2021. Toward the method for generating 250-m all-weather land surface temperature for glacier regions in Southeast Tibet. National Remote Sensing Bulletin, 25(8):1873-1888
遥感全天候地表温度产品在多云雾地区意义重大,对冰川泥石流多发的藏东南地区极具应用价值,但遥感全天候地表温度空间分辨率不足限制了其在精细化灾害监测中的应用。以藏东南冰川地区为研究区,采用高程、坡度、坡向、地表覆盖类型、植被指数、地表反射率、积雪指数作为全天候地表温度的影响因子,结合移动窗口,进行多种地表温度降尺度方法的对比,进而使用最优的降尺度方法将现有的遥感全天候地表温度产品(TRIMS LST)的空间分辨率从1 km提升至250 m。利用地面站点实测数据的评价结果表明,基于梯度提升决策树(LightGBM)的降尺度方法得到的250 m空间分辨率全天候地表温度的均方根误差在白天/夜间为2.25 K/2.15 K,优于基于多元线性回归和随机森林的降尺度方法,且比原始1 km分辨率全天候地表温度的精度高0.25 K左右。基于
Q
指数与
SIFI
指数的图像质量评价结果表明,降尺度得到的250 m地表温度不仅在空间格局和幅值上与原始1 km遥感全天候地表温度一致,而且补充了大量的地表温度空间细节信息。生成得到的250 m分辨率的地表温度对于藏东南冰川地区的灾害分析具有积极的意义。
All-weather LST with higher spatial resolution are important for the detailed monitoring and early-stage warning of glacial debris flow disasters in Southeast Tibet. Based on the latest 1-km all-weather LST (TRIMS LST) product
a variety of LST downscaling methods were compared in this paper
and the optimal downscaling method was determined to generate all-weather LST at 250 m in the glacier regions in Southeast Tibet.
The application of remotely sensed all-weather LST with insufficient spatial resolution in fine disaster monitoring has many limitations. At present
there are few studies on the spatial downscaling of all-weather LST. In this paper
the 1-km/250-m elevation
slope
aspect
land cover type
vegetation index
surface reflectivity
and snow index were used as the descriptors of LST. Combining the moving window strategy
a variety of LST downscaling methods were compared in this paper
and the optimal downscaling method was used to improve the spatial resolution of all-weather LST (TRIMS LST) from 1 km to 250 m.
Based on the RMSE between the 250-m all-weather LST generated in different moving windows and the original 1-km TRIMS LST
and the 20×20 km is determined as the best downscaling window. The evaluation results based on the measurement data from ground sites and image quality indices show that LightGBM has optimal downscaling performance. The RMSE and MBE between the 250-m all-weather LST generated by the LightGBM and the measurement soil temperature during the day are 2.25 K and -0.01 K and during the night are 2.15 K and 0.74 K. Compared with the original 1-km TRIMS LST
RMSE and MBE were reduced by approximately 0.25 K. Evaluation results based on the air temperature from ground sites show that the 250-m all-weather LST also has good reliability at the glacier. The
Q
index shows that the 250-m all-weather LST generated by the LightGBM not only maintains high consistency with the original 1-km all-weather LST in terms of spatial pattern and amplitude
but also provides a large amount of spatial detailed information of surface temperature. The
SIFI
index further indicates that the 250-m LST has high image quality without over-sharpening.
The all-weather LST with a 250-m spatial resolution can be used as reliable and high-resolution LST data for the monitoring and early warning of disasters such as glacial debris flow in the glacier area of Southeast Tibet
which have positive significance for disaster monitoring in this area. Since the spatial resolution of some descriptors (e.g.
vegetation index) is 250 m
the all-weather LST can only be downscaled to a spatial resolution of 250 m in the current stage. How to improve the spatial resolution of descriptors for further determining a higher spatial-resolution all-weather LST still needs more in-depth research.
地表温度降尺度全天候冰川藏东南
LSTdownscalingall-weatherglaciersSoutheast Tibet
Li Z, Duan S, Tang B, Wu Y, Ren H, Yan G, Tang R and Leng P. 2016. Review of methods for land surface temperature derived from thermal infrared remotely sensed data Journal of Remote Sensing, 20(5): 899-920
李召良, 段四波, 唐伯惠, 吴骅, 任华忠, 阎广建, 唐荣林, 冷佩, 2016.热红外地表温度遥感反演方法研究进展. 遥感学报 20(5), 899-920
Liu Z, Wu P, Wu Y, Shen H and Zeng C. 2017. Robust reconstruction of missing data in Feng Yun geostationary satellite land surface temperature products. Journal of Remote Sensing, 21(1): 40-51
刘紫涵, 吴鹏海, 吴艳兰, 沈焕锋, 曾超, 2017. 风云静止卫星地表温度产品空值数据稳健修复. 遥感学报 21(1), 40-51
Agam N, Kustas W P, Anderson M C, Li F Q and Neale C M U. 2007. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sensing of Environment, 107(4): 545-558 [DOI: 10.1016/j.rse.2006.10.006http://dx.doi.org/10.1016/j.rse.2006.10.006]
Bindhu V M, Narasimhan B and Sudheer K P. 2013. Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration. Remote Sensing of Environment, 135: 118-129 [DOI: 10.1016/j.rse.2013.03.023http://dx.doi.org/10.1016/j.rse.2013.03.023]
Bob S and Yang K. 2019. Time-lapse Observation Dataset of Soil Temperature and Humidity on the Tibetan Plateau (2008-2016). National Tibetan Plateau Data Center [DOI: 10.11888/Soil.tpdc.270110http://dx.doi.org/10.11888/Soil.tpdc.270110]
Brabyn L and Stichbury G. 2020. Calculating the surface melt rate of Antarctic glaciers using satellite-derived temperatures and stream flows. Environmental Monitoring and Assessment, 192(7): 440 [DOI: 10.1007/s10661-020-08396-xhttp://dx.doi.org/10.1007/s10661-020-08396-x]
Chen J, Ban Y F and Li S N. 2014. Open access to Earth land-cover map. Nature, 514(7523): 434 [DOI: 10.1038/514434chttp://dx.doi.org/10.1038/514434c]
Chen N S, Ding H T and Deng M F. 2019a. Meteorological observation data of midui, southeast Tibet, 2017-2019. National Cryosphere Desert Data Center. www.ncdc.ac.cn (www.ncdc.ac.cn(
陈宁生, 丁海涛, 邓明枫. 2019a. 2017-2019年藏东南米堆气象观测数据. 国家冰川冻土沙漠科学数据中心. www.ncdc.ac.cnwww.ncdc.ac.cn[2021-05-10]
Chen N S, Ding H T and Deng M F. 2019b. 2016-2019
Runoff observation data of kalongla glacier in Southeast Tibet. National Cryosphere Desert Data Center. www.ncdc.ac.cn (www.ncdc.ac.cn(陈宁生, 丁海涛, 邓明枫. 2019b. 2016-2019年藏东南嘎隆拉冰川径流观测数据. 国家冰川冻土沙漠科学数据中心. www.ncdc.ac.cnwww.ncdc.ac.cn[2021-05-10])
Chen N S, Ding H T and Deng M F. 2019c. Meteorological observation data of pelonggou, southeast Tibet from 2017 to 2019. National Cryosphere Desert Data Center. www.ncdc.ac.cn (www.ncdc.ac.cn(
陈宁生, 丁海涛, 邓明枫. 2019c. 2017-2019年藏东南培龙沟气象观测数据. 国家冰川冻土沙漠科学数据中心. www.ncdc.ac.cnwww.ncdc.ac.cn[2021-05-10]
Chen N S, Ding H T and Deng M F. 2019d. Observation data of debris flow in guxianggou glacier, southeast Tibet, 2017-2019. National Cryosphere Desert Data Center. www.ncdc.ac.cn (www.ncdc.ac.cn(
陈宁生, 丁海涛, 邓明枫. 2019d. 2017-2019年藏东南古乡沟冰川泥石流观测数据. 国家冰川冻土沙漠科学数据中心. www.ncdc.ac.cnwww.ncdc.ac.cn[2021-05-10]
Deng M F, Chen N S, Wang T and Ding H T. 2017. Fluctuation of daily rainfall extreme in Southeastern Tibet. Journal of Natural Disasters, 26(2): 152-159
邓明枫, 陈宁生, 王涛, 丁海涛. 2017. 藏东南地区日降雨极值的波动变化. 自然灾害学报, 26(2): 152-159 [DOI: 10.13577/j.jnd.2017.0218http://dx.doi.org/10.13577/j.jnd.2017.0218]
Dente L, Vekerdy Z, Wen J and Su Z. 2012. Maqu network for validation of satellite-derived soil moisture products. International Journal of Applied Earth Observation and Geoinformation, 17: 55-65 [DOI: 10.1016/j.jag.2011.11.004http://dx.doi.org/10.1016/j.jag.2011.11.004]
Dominguez A, Kleissl J, Luvall J C and Rickman D L. 2011. High-resolution urban thermal sharpener (HUTS). Remote Sensing of Environment, 115(7): 1772-1780 [DOI: 10.1016/j.rse.2011.03.008http://dx.doi.org/10.1016/j.rse.2011.03.008]
Duan S B and Li Z L. 2016. Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: case study in northern China. IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6458-6469 [DOI: 10.1109/tgrs.2016.2585198http://dx.doi.org/10.1109/tgrs.2016.2585198]
Duan S B, Li Z L and Leng P. 2017. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sensing of Environment, 195: 107-117 [DOI: 10.1016/j.rse.2017.04.008http://dx.doi.org/10.1016/j.rse.2017.04.008]
Friedman J H. 2001. Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29(5): 1189-1232 [DOI: 10.1214/aos/1013203451http://dx.doi.org/10.1214/aos/1013203451]
Gao L, Zhan W F, Huang F, Zhu X L, Zhou J, Quan J J, Du P J and Li M C. 2017. Disaggregation of remotely sensed land surface temperature: a simple yet flexible index (SIFI) to assess method performances. Remote Sensing of Environment, 200: 206-219 [DOI: 10.1016/j.rse.2017.08.003http://dx.doi.org/10.1016/j.rse.2017.08.003]
Gao Y, Li B, Feng Z and Zuo X. 2017. Global climate change and geological disaster response analysis. Journal of Geomechanics, 23(1): 65-77
高杨, 李滨, 冯振, 左晓. 2017. 全球气候变化与地质灾害响应分析. 地质力学学报, 23(1): 65-77 [DOI: 10.3969/j.issn.1006-6616.2017.01.002http://dx.doi.org/10.3969/j.issn.1006-6616.2017.01.002]
Gong P, Liu H, Zhang M N, Li C C, Wang J, Huang H B, Clinton N, Ji L Y, Li W Y, Bai Y Q, Chen B, Xu B, Zhu Z L, Yuan C, Suen H P, Guo J, Xu N, Li W J, Zhao Y Y, Yang J, Yu C Q, Wang X, Fu H H, Yu L, Dronova I, Hui F M, Cheng X, Shi X L, Xiao F J, Liu Q F and Song L C. 2019. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6): 370-373 [DOI: 10.1016/j.scib.2019.03.002http://dx.doi.org/10.1016/j.scib.2019.03.002]
Göttsche F M, Olesen F S, Trigo I F, Bork-Unkelbach A and Martin M A. 2016. Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa. Remote Sensing, 8(5): 410 [DOI: 10.3390/rs8050410http://dx.doi.org/10.3390/rs8050410]
Hutengs C and Vohland M. 2016. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sensing of Environment, 178: 127-141 [DOI: 10.1016/j.rse.2016.03.006http://dx.doi.org/10.1016/j.rse.2016.03.006]
Jiang J C, Liu J Z, Qin C Z, Miao Y M and Zhu A X. 2016. Near-surface air temperature lapse rates and seasonal and type differences in China. Progress in Geography, 35(12): 1538-1548
江净超, 刘军志, 秦承志, 缪亚敏, 朱阿兴. 2016. 中国近地表气温直减率及其季节和类型差异. 地理科学进展, 35(12): 1538-1548 [DOI: 10.18306/dlkxjz.2016.12.010http://dx.doi.org/10.18306/dlkxjz.2016.12.010]
Ke G L, Meng Q, Finley T, Wang T F, Chen W, Ma W D, Ye Q W and Liu T Y. 2017. LightGBM: a highly efficient gradient boosting decision tree//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc
Kou X K, Jiang L M, Bo Y C, Yan S and Chai L N. 2016. Estimation of land surface temperature through blending MODIS and AMSR-E data with the Bayesian maximum entropy method. Remote Sensing, 8(2): 105 [DOI: 10.3390/rs8020105http://dx.doi.org/10.3390/rs8020105]
Kustas W P, Norman J M, Anderson M C and French A N. 2003. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sensing of Environment, 85(4): 429-440 [DOI: 10.1016/s0034-4257(03)00036-1http://dx.doi.org/10.1016/s0034-4257(03)00036-1]
Li H, Du Y M, Liu Q H, Xu D Q, Cao B, Jiang J X and Wang H S. 2014. Land surface temperature retrieval from Tiangong-1 data and its applications in urban heat island effect. Journal of Remote Sensing, 18(S1): 133-143
历华, 杜永明, 柳钦火, 徐大琦, 曹彪, 蒋金雄, 王合顺. 2014. 天宫一号数据地表温度反演及其在城市热岛效应中的应用. 遥感学报, 18(S1): 133-143 [DOI: 10.11834/jrs.2014z20http://dx.doi.org/10.11834/jrs.2014z20]
Long D, Yan L, Bai L L, Zhang C J, Li X Y, Lei H M, Yang H B, Tian F Q, Zeng C, Meng X Y and Shi C X. 2020. Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach. Remote Sensing of Environment, 246: 111863 [DOI: 10.1016/j.rse.2020.111863http://dx.doi.org/10.1016/j.rse.2020.111863]
Ma J, Zhou J, Göttsche F M, Liang S L, Wang S F and Li M S. 2020. A global long-term (1981-2000) land surface temperature product for NOAA AVHRR. Earth System Science Data, 12(4): 3247-3268 [DOI: 10.5194/essd-12-3247-2020http://dx.doi.org/10.5194/essd-12-3247-2020]
Qie Y F. 2020. Spatial and Temporal Variations of Glacier Surface Temperature and Albedo in the Qinghai-Tibetan Plateau During the Past 20 Years Using MODIS Data. Xi’an: Northwest University
郄宇凡. 2020. 基于MODIS数据的近20年青藏高原冰川表面温度与反照率时空变化特征研究. 西安: 西北大学
Quan J L, Zhan W F, Chen Y H and Liu W Y. 2013. Downscaling remotely sensed land surface temperatures: a comparison of typical methods. Journal of Remote Sensing, 17(2): 361-387
全金玲, 占文凤, 陈云浩, 刘闻雨. 2013. 遥感地表温度降尺度方法比较——性能对比及适应性评价. 遥感学报, 17(2): 361-387 [DOI: 10.11834/jrs.20132007http://dx.doi.org/10.11834/jrs.20132007]
Stathopoulou M and Cartalis C. 2009. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sensing of Environment, 113(12): 2592-2605 [DOI: 10.1016/j.rse.2009.07.017http://dx.doi.org/10.1016/j.rse.2009.07.017]
Su Z, de Rosnay P, Wen J, Wang L and Zeng Y. 2013. Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(11): 5304-5318 [DOI: 10.1002/jgrd.50468http://dx.doi.org/10.1002/jgrd.50468]
Su Z, Wen J, Dente L, van der Velde R, Wang L, Ma Y, Yang K and Hu Z. 2011. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrology and Earth System Sciences, 15(7): 2303-2316 [DOI: 10.5194/hess-15-2303-2011http://dx.doi.org/10.5194/hess-15-2303-2011]
Tang R L, Wang S L, Jiang Y Z, Li Z L, Liu M, Tang B H and Wu H. 2021. A review of retrieval of land surface evapotranspiration based on remotely sensed surface temperature versus vegetation index triangular/trapezoidal characteristic space. Journal of Remote Sensing, 25(1): 65-82
唐荣林, 王晟力, 姜亚珍, 李召良, 刘萌, 唐伯惠, 吴骅. 2021. 基于地表温度—植被指数三角/梯形特征空间的地表蒸散发遥感反演综述. 遥感学报, 25(1): 65-82 [DOI: 10.11834/jrs.20210388http://dx.doi.org/10.11834/jrs.20210388]
Tie Y B and Li Z L. 2010. Progress in the study of glacial debris flow mechanisms. Advances in Water Science, 21(6): 861-866
铁永波, 李宗亮. 2010. 冰川泥石流形成机理研究进展. 水科学进展, 21(6): 861-866 [DOI: 10.14042/j.cnki.32.1309.2010.06.007http://dx.doi.org/10.14042/j.cnki.32.1309.2010.06.007]
van der Velde R, Su Z B, van Oevelen P, Wen J, Ma Y M and Salama M S. 2012. Soil moisture mapping over the central part of the Tibetan Plateau using a series of ASAR WS images. Remote Sensing of Environment, 120: 175-187 [DOI: 10.1016/j.rse.2011.05.029http://dx.doi.org/10.1016/j.rse.2011.05.029]
Wang Z and Bovik A C. 2002. A universal image quality index. IEEE Signal Processing Letters, 9(3): 81-84 [DOI: 10.1109/97.995823http://dx.doi.org/10.1109/97.995823]
Wang Z H, Qin Q M, Sun Y H, Zhang T Y and Ren H Z. 2018. Downscaling of remotely sensed land surface temperature with the BP neural network. Remote Sensing Technology and Application, 33(5): 793-802
汪子豪, 秦其明, 孙元亨, 张添源, 任华忠. 2018. 基于BP神经网络的地表温度空间降尺度方法. 遥感技术与应用, 33(5): 793-802 [DOI: 10.11873/j.issn.1004-0323.2018.5.0793http://dx.doi.org/10.11873/j.issn.1004-0323.2018.5.0793]
Wang Z Q, Lu Z Y and Cui G L. 2020. Spatiotemporal variation of land surface temperature and vegetation in response to climate change based on NOAA-AVHRR data over China. Sustainability, 12(9): 3601 [DOI: 10.3390/su12093601http://dx.doi.org/10.3390/su12093601]
Wu G J, Yao T D, Wang W C, Zhao H B, Yang W, Zhang G Q, Li S H, Yu W S, Lei Y B and Hu W T. 2019. Glacial hazards on Tibetan Plateau and surrounding Alpines. Bulletin of the Chinese Academy of Sciences, 34(11): 1285-1292
邬光剑, 姚檀栋, 王伟财, 赵华标, 杨威, 张国庆, 李生海, 余武生, 类延斌, 胡文涛. 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292 [DOI: 10.16418/j.issn.1000-3045.2019.11.011http://dx.doi.org/10.16418/j.issn.1000-3045.2019.11.011]
Xiao Y, Ma M G, Wen J G and Yu W P. 2021. Progress in land surface temperature retrieval over complex surface. Remote Sensing Technology and Application, 36(1): 33-43
肖尧, 马明国, 闻建光, 于文凭. 2021. 复杂地表地表温度反演研究进展. 遥感技术与应用, 36(1): 33-43
Yalcin M and Polat N. 2020. The impact of glacier surface temperature on the glacier retreat of Ağrı Mountain. Journal of the Indian Society of Remote Sensing, 48(10): 1433-1441 [DOI: 10.1007/s12524-020-01167-8http://dx.doi.org/10.1007/s12524-020-01167-8]
Yang J J, Zhou J, Göttsche F M, Long Z Y, Ma J and Luo R. 2020. Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data. International Journal of Applied Earth Observation and Geoinformation, 91: 102136 [DOI: 10.1016/j.jag.2020.102136http://dx.doi.org/10.1016/j.jag.2020.102136]
Yang K, Qin J, Zhao L, Chen Y Y, Tang W J, Han M L, Lazhu, Chen Z Q, Lv N, Ding B H, Wu H and Lin C G. 2013. A multiscale soil moisture and freeze–thaw monitoring network on the Third Pole. Bulletin of the American Meteorological Society, 94(12): 1907-1916 [DOI: 10.1175/bams-d-12-00203.1http://dx.doi.org/10.1175/bams-d-12-00203.1]
Zhan W F, Chen Y H, Zhou J, Wang J F, Liu W Y, Voogt J, Zhu X L, Quan J L and Li J. 2013. Disaggregation of remotely sensed land surface temperature: literature survey, taxonomy, issues, and caveats. Remote Sensing of Environment, 131: 119-139 [DOI: 10.1016/j.rse.2012.12.014http://dx.doi.org/10.1016/j.rse.2012.12.014]
Zhang J J, Liu J K, Gao B, Chen L, Li Y L, Zou R Z and Huang L. 2018. Characteristics of material sources of Galongqu glacial debris flow and the influence to Zhamo road. Journal of Geomechanics, 24(1): 106-115
张佳佳, 刘建康, 高波, 陈龙, 李元灵, 邹任州, 黄亮. 2018. 藏东南嘎龙曲冰川泥石流的物源特征及其对扎墨公路的影响. 地质力学学报, 24(1): 106-115 [DOI: 10.12090/j.issn.1006-6616.2018.24.01.012http://dx.doi.org/10.12090/j.issn.1006-6616.2018.24.01.012]
Zhang X D, Zhou J, Göttsche F M, Zhan W F, Liu S M and Cao R Y. 2019. A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations. IEEE Transactions on Geoscience and Remote Sensing, 57(7): 4670-4691 [DOI: 10.1109/tgrs.2019.2892417http://dx.doi.org/10.1109/tgrs.2019.2892417]
Zhang X D, Zhou J, Liang S L and Wang D D. 2021. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sensing of Environment, 260: 112437 [DOI: 10.1016/j.rse.2021.112437http://dx.doi.org/10.1016/j.rse.2021.112437]
Zhou J, Liu S M, Li M S, Zhan W F, Xu Z W and Xu T R. 2016. Quantification of the scale effect in downscaling remotely sensed land surface temperature. Remote Sensing, 8(12): 975 [DOI: 10.3390/rs8120975http://dx.doi.org/10.3390/rs8120975]
Zhu S Y, Zhang G X, Yin Q and Kuang D B. 2006. Actualities and development trends of the study on land surface temperature retrieving from thermal infrared remote sensing. Remote Sensing Technology and Application, 21(5): 420-425
祝善友, 张桂欣, 尹球, 匡定波. 2006. 地表温度热红外遥感反演的研究现状及其发展趋势. 遥感技术与应用, 21(5): 420-425 [DOI: 10.3969/j.issn.1004-0323.2006.05.004http://dx.doi.org/10.3969/j.issn.1004-0323.2006.05.004]
相关作者
相关机构