全天候地表温度遥感获取进展与挑战
Estimation of all-weather land surface temperature with remote sensing: Progress and challenges
- 2023年27卷第7期 页码:1534-1553
纸质出版日期: 2023-07-07
DOI: 10.11834/jrs.20211323
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-07-07 ,
扫 描 看 全 文
丁利荣,周纪,张晓东,王韶飞,唐文彬,王子卫,马晋,艾丽皎,李明松,王伟.2023.全天候地表温度遥感获取进展与挑战.遥感学报,27(7): 1534-1553
Ding L R, Zhou J, Zhang X D, Wang S F, Tang W B, Wang Z W, Ma J, Ai L J, Li M S and Wang W. 2023. Estimation of all-weather land surface temperature with remote sensing: Progress and challenges. National Remote Sensing Bulletin, 27(7):1534-1553
如何获取全天候地表温度对促进相关研究具有十分重要的意义。卫星热红外遥感地表温度虽然在反演理论方法和科学数据产品等方面已相对成熟,但热红外难以穿透云雾的特点导致反演得到的地表温度在云下有大量缺失;被动微波遥感虽能获取云下地表温度,但由于物理机制和成像方式的限制,存在空间分辨率不足、精度较低、轨道间隙较大等问题。通过卫星单源遥感难以直接获取中等空间分辨率、不受云雾影响的全天候地表温度。从原理、方法、产品和应用方面回顾并归纳了当前全天候地表温度的研究进展和面临的主要问题。基于有效观测重构和多源数据集成是获取全天候地表温度的两种基本途径,前者可分为时空插值和基于能量平衡方程插值两类,后者则可分为热红外与被动微波遥感集成、热红外与再分析资料集成。多源数据集成可以整合热红外遥感、被动微波遥感、再分析资料各自的优势,具有较大的研究价值和潜力。在产品方面,分析了当前学术界已公开发布的5种全天候地表温度产品。在应用方面,虽然部分全天候地表温度产品已在土壤湿度、地表蒸散发估算与同化方面取得了一些应用成果,但其在其他领域的应用亟待挖掘。此外,对全天候地表温度的未来研究方向和重点进行了讨论和展望。
Land Surface Temperature (LST) is an important parameter for characterizing the surface–air exchange process
which plays an important role in climate change
ecological monitoring
hydrological simulation
and other studies. The traditional LST estimated from Thermal Infrared (TIR) remote sensing is mature in terms of retrieval methods
data production
and quality control. However
the TIR LST has considerable missing data under clouds because of the limitation that the TIR radiation from the ground surface cannot penetrate the clouds. In addition
Passive Microwave (PMW) remote sensing has disadvantages
such as strip gaps and coarse spatial resolution
because of the limitations of the physical mechanisms and imaging methods. Therefore
the all-weather LST unaffected by cloudiness must be obtained to support the subsequent studies. In the present study
we review and organize the basic principles and methods of the acquisition of all-weather LST. The methods are classified into two categories: (i) all-weather LST reconstruction from effective observation and (ii) multisource data integration.
The comparative analysis indicates that multisource data integration can combine the advantages of TIR
PMW
and reanalysis data. Thus
it has the highest research value and potential for further research. Multisource data integration can be employed to obtain global long-time all-weather LST products characterized by spatial and temporal continuity. The LST retrieved from PMW remote sensing suffers from coarse spatial resolution and strip gaps. However
it is still an effective method of obtaining land surface information under clouds and an important input parameter for multisource data integration. The reconstructions of all-weather LST based on effective observation only apply to small areas with cloud cover in short periods. They are not practicable for long-term cloudy areas.
From the analysis and conclusion
this study also collects and analyzes information about five currently released all-weather surface temperature products. The advantages and disadvantages of the existing products are also summarized. A global all-weather LST product with high quality and spatial resolution is urgently needed by the scientific community. After reviewing the all-weather LST products
we further summarize the applications of all-weather LST. Its applications are still in their infancy. Research on the applications of all-weather LST is relatively small in the current stage. However
all-weather LST has great potential for applications when its products further mature.
Finally
further study directions and theoretical development of all-weather LST are discussed and prospected. First
with PMW LST as the basis for all-weather LST
two issues must be addressed: (i) filling the PMW LST strip gap to make the PMW surface temperature a complete spatial coverage; (ii) correcting thermal sampling depth to make that PMW LST obtain the same physical meaning as TIR LST. The reason is that the inconsistent observation caused by the varying thermal sampling depth is the actual reason for the inconsistent physical meaning of PMW and TIR observation information. Second
we should further strengthen the study on estimating all-weather LST from multisource data. The current study of multisource data integration is still in the preliminary stage
and no systematic and effective integration strategy has been developed. Third
the scientific community should enhance the production
publication
and application of all-weather LST products. Few all-weather LST products can be directly applied by users. Generating all-weather LST products with global spatial and temporal continuity and high spatial resolution should be the task of an all-weather LST study. Besides improving the data quality and reliability of all-weather LST
focusing on the operability and cost of the method in practical applications is necessary to make the all-weather LST usable data
thereby truly promoting the progress of the related studies.
遥感全天候地表温度重构插值多源数据集成
remote sensingall-weather land surface temperaturereconstructioninterpolationmulti-source data integration
Aires F, Prigent C, Rossow W B and Rothstein M. 2001. A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations. Journal of Geophysical Research: Atmospheres, 106(D14): 14887-14907 [DOI: 10.1029/2001JD900085http://dx.doi.org/10.1029/2001JD900085]
Anderson M C, Norman J M, Kustas W P, Houborg R, Starks P J and Agam N. 2008. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment, 112(12): 4227-4241 [DOI: 10.1016/j.rse.2008.07.009http://dx.doi.org/10.1016/j.rse.2008.07.009]
André C, Ottlé C, Royer A and Maignan F. 2015. Land surface temperature retrieval over circumpolar Arctic using SSM/I-SSMIS and MODIS data. Remote Sensing of Environment, 162: 1-10 [DOI: 10.1016/j.rse.2015.01.028http://dx.doi.org/10.1016/j.rse.2015.01.028]
Bai L L, Long D and Yan L. 2019. Estimation of surface soil moisture with downscaled land surface temperatures using a data fusion approach for heterogeneous Agricultural Land. Water Resources Research, 55(2): 1105-1128 [DOI: 10.1029/2018WR024162http://dx.doi.org/10.1029/2018WR024162]
Basist A, Grody N C, Peterson T C and Williams C N. 1998. Using the special sensor microwave/imager to monitor land surface temperatures, wetness, and snow cover. Journal of Applied Meteorology, 37(9): 888-911 [DOI: 10.1175/1520-0450(1998)037<0888:UTSSMI>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1998)037<0888:UTSSMI>2.0.CO;2]
Bechtel B. 2012. Robustness of annual cycle parameters to characterize the urban thermal landscapes. IEEE Geoscience and Remote Sensing Letters, 9(5): 876-880 [DOI: 10.1109/LGRS.2012.2185034http://dx.doi.org/10.1109/LGRS.2012.2185034]
Cammalleri C, Anderson M C, Gao F, Hain C R and Kustas W P. 2014. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agricultural and Forest Meteorology, 186: 1-11 [DOI: 10.1016/j.agrformet.2013.11.001http://dx.doi.org/10.1016/j.agrformet.2013.11.001]
Catherinot J, Prigent C, Maurer R, Papa F, Jiménez C, Aires F and Rossow W B. 2011. Evaluation of “all weather” microwave-derived land surface temperatures with in situ CEOP measurements. Journal of Geophysical Research: Atmospheres, 116(D23): D23105 [DOI: 10.1029/2011JD016439http://dx.doi.org/10.1029/2011JD016439]
Chen J, Brissette F P and Leconte R. 2011. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology, 401(3/4): 190-202 [DOI: 10.1016/j.jhydrol.2011.02.020http://dx.doi.org/10.1016/j.jhydrol.2011.02.020]
Crosson W L, Al-Hamdan M Z, Hemmings S N J and Wade G M. 2012. A daily merged MODIS Aqua–Terra land surface temperature data set for the conterminous United States. Remote Sensing of Environment, 119: 315-324 [DOI: 10.1016/j.rse.2011.12.019http://dx.doi.org/10.1016/j.rse.2011.12.019]
Dai F N. 2016. Retrieval and Validation of Land Surface Temperature from AMSR2 Data. Chengdu: University of Electronic Science and Technology of China.
代冯楠. 2016. 面向AMSR2被动微波遥感数据的地表温度反演方法与验证研究. 成都: 电子科技大学
Deardorff J W. 1978. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal of Geophysical Research: Oceans, 83(C4): 1889-1903 [DOI: 10.1029/JC083iC04p01889http://dx.doi.org/10.1029/JC083iC04p01889]
Dickinson R E. 1988. The force–restore model for surface temperatures and its generalizations. Journal of Climate, 1(11): 1086-1097 [DOI: 10.1175/1520-0442(1988)001<1086:TFMFST>2.0.CO;2http://dx.doi.org/10.1175/1520-0442(1988)001<1086:TFMFST>2.0.CO;2]
Dong L X, Yang H, Zhang P, Tang S H and Lu Q F. 2012. Retrieval of land surface temperature and dynamic monitoring of a high temperature weather process based on FY-3A/VIRR data. Journal of Applied Meteorological Science, 23(2): 214-222
董立新, 杨虎, 张鹏, 唐世浩, 陆其峰. 2012. FY-3A陆表温度反演及高温天气过程动态监测. 应用气象学报, 23(2): 214-222
Duan S B, Han X J, Huang C, Li Z L, Wu H, Qian Y G, Gao M F and Leng P. 2020. Land surface temperature retrieval from passive microwave satellite observations: state-of-the-art and future directions. Remote Sensing, 12(16): 2573 [DOI: 10.3390/rs12162573http://dx.doi.org/10.3390/rs12162573]
Duan S B, Li Z L and Leng P. 2017. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sensing of Environment, 195: 107-117 [DOI: 10.1016/j.rse.2017.04.008http://dx.doi.org/10.1016/j.rse.2017.04.008]
Duan S B, Li Z L, Leng P, Han X J and Chen Y Y. 2015. Generation of an all-weather land surface temperature product from MODIS and AMSR-E data//Proceedings of SPIE 9808, International Conference on Intelligent Earth Observing and Applications 2015. Guilin: SPIE: 980816 [DOI: 10.1117/12.2207848]
Duan S B, Li Z L, Wang N, Wu H and Tang B H. 2012. Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data. Remote Sensing of Environment, 124: 15-25 [DOI: 10.1016/j.rse.2012.04.016http://dx.doi.org/10.1016/j.rse.2012.04.016]
Fan X M, Liu H G, Liu G H and Li S B. 2014. Reconstruction of MODIS land-surface temperature in a flat terrain and fragmented landscape. International Journal of Remote Sensing, 35(23): 7857-7877 [DOI: 10.1080/01431161.2014.978036http://dx.doi.org/10.1080/01431161.2014.978036]
Fily M, Royer A, Goïta K and Prigent C. 2003. A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas. Remote Sensing of Environment, 85(3): 328-338 [DOI: 10.1016/S0034-4257(03)00011-7http://dx.doi.org/10.1016/S0034-4257(03)00011-7]
Ford T W and Quiring S M. 2019. Comparison of contemporary in situ, model, and satellite remote sensing soil moisture with a focus on drought monitoring. Water Resources Research, 55(2): 1565-1582 [DOI: 10.1029/2018WR024039http://dx.doi.org/10.1029/2018WR024039]
Fu P, Xie Y H, Weng Q H, Myint S, Meacham-Hensold K and Bernacchi C. 2019. A physical model-based method for retrieving urban land surface temperatures under cloudy conditions. Remote Sensing of Environment, 230: 111191 [DOI: 10.1016/j.rse.2019.05.010http://dx.doi.org/10.1016/j.rse.2019.05.010]
Galantowicz J F, Moncet J L, Liang P, Lipton A E, Uymin G, Prigent C and Grassotti C. 2011. Subsurface emission effects in AMSR-E measurements: implications for land surface microwave emissivity retrieval. Journal of Geophysical Research: Atmospheres, 116(D17): D17105 [DOI: 10.1029/2010JD015431http://dx.doi.org/10.1029/2010JD015431]
Gao H L, Fu R, Dickinson R E and Juárez R I N. 2008. A practical method for retrieving land surface temperature from AMSR-E over the amazon forest. IEEE Transactions on Geoscience and Remote Sensing, 46(1): 193-199 [DOI: 10.1109/TGRS.2007.906478http://dx.doi.org/10.1109/TGRS.2007.906478]
Ghafarian Malamiri H R, Rousta I, Olafsson H, Zare H and Zhang H. 2018. Gap-filling of MODIS time series Land Surface Temperature (LST) products using singular spectrum analysis (SSA). Atmosphere, 9(9): 334 [DOI: 10.3390/atmos9090334http://dx.doi.org/10.3390/atmos9090334]
Ghent D J, Corlett G K, Göttsche F M and Remedios J J. 2017. Global land surface temperature from the along-track scanning radiometers. Journal of Geophysical Research: Atmospheres, 122(22): 12167-12193 [DOI: 10.1002/2017JD027161http://dx.doi.org/10.1002/2017JD027161]
Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S and Kahle A B. 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113-1126 [DOI: 10.1109/36.700995http://dx.doi.org/10.1109/36.700995]
Gong T T, Lei H M, Yang D W, Jiao Y and Yang H B. 2017. Monitoring the variations of evapotranspiration due to land use/cover change in a semiarid shrubland. Hydrology and Earth System Sciences, 21(2): 863-877 [DOI: 10.5194/hess-21-863-2017http://dx.doi.org/10.5194/hess-21-863-2017]
Göttsche F M and Olesen F S. 2001. Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sensing of Environment, 76(3): 337-348 [DOI: 10.1016/S0034-4257(00)00214-5http://dx.doi.org/10.1016/S0034-4257(00)00214-5]
Gu S Y, Qiu H and Zhang W J. 2004. Retrieval of land surface microwave emissivity by using satellite-borne AMSU data. Chinese Journal of Radio Science, 19(4): 452-457
谷松岩, 邱红, 张文建. 2004. 先进微波探测器资料反演地表微波辐射率试验. 电波科学学报, 19(4): 452-457 [DOI: 10.3969/j.issn.1005-0388.2004.04.014http://dx.doi.org/10.3969/j.issn.1005-0388.2004.04.014]
He X L, Xu T R, Bateni S M, Ek M, Liu S M and Chen F. 2020. Mapping regional evapotranspiration in cloudy skies via variational assimilation of all-weather land surface temperature observations. Journal of Hydrology, 585: 124790 [DOI: 10.1016/j.jhydrol.2020.124790http://dx.doi.org/10.1016/j.jhydrol.2020.124790]
Holmes T R H, De Jeu R A M, Owe M and Dolman A J. 2009. Land surface temperature from Ka band (37 GHz) passive microwave observations. Journal of Geophysical Research: Atmospheres, 114(D4): D04113 [DOI: 10.1029/2008JD010257http://dx.doi.org/10.1029/2008JD010257]
Holmes T R H, Crow W T, Hain C, Anderson M C and Kustas W P. 2015. Diurnal temperature cycle as observed by thermal infrared and microwave radiometers. Remote Sensing of Environment, 158: 110-125 [DOI: 10.1016/j.rse.2014.10.031http://dx.doi.org/10.1016/j.rse.2014.10.031]
Holmes T R H, Crow W T, Tugrul Yilmaz M, Jackson T J and Basara J B. 2013. Enhancing model-based land surface temperature estimates using multiplatform microwave observations. Journal of Geophysical Research: Atmospheres, 118(2): 577-591 [DOI: 10.1002/jgrd.50113http://dx.doi.org/10.1002/jgrd.50113]
Hu L Q, Brunsell N A, Monaghan A J, Barlage M and Wilhelmi O V. 2014. How can we use MODIS land surface temperature to validate long-term urban model simulations? Journal of Geophysical Research: Atmospheres, 119(6): 3185-3201 [DOI: 10.1002/2013JD021101http://dx.doi.org/10.1002/2013JD021101]
Huang B, Wang J, Song H H, Fu D J and Wong K K. 2013. Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring. IEEE Geoscience and Remote Sensing Letters, 10(5): 1011-1015 [DOI: 10.1109/LGRS.2012.2227930http://dx.doi.org/10.1109/LGRS.2012.2227930]
Hulley G, Veraverbeke S and Hook S. 2014. Thermal-based techniques for land cover change detection using a new dynamic MODIS multispectral emissivity product (MOD21). Remote Sensing of Environment, 140: 755-765 [DOI: 10.1016/j.rse.2013.10.014http://dx.doi.org/10.1016/j.rse.2013.10.014]
Jiménez-Muñoz J.C., Sobrino J.A., 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of geophysical research: atmospheres 108.
Jin M L. 2000. Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle: 2. Cloudy-pixel treatment. Journal of Geophysical Research: Atmospheres, 105(D3): 4061-4076 [DOI: 10.1029/1999JD901088http://dx.doi.org/10.1029/1999JD901088]
Jin M L and Dickinson R E. 1999. Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle: 1. Without clouds. Journal of Geophysical Research: Atmospheres, 104(D2): 2105-2116 [DOI: 10.1029/1998JD200005http://dx.doi.org/10.1029/1998JD200005]
Jones L A, Kimball J S, McDonald K C, Chan S T K, Njoku E G and Oechel W C. 2007. Satellite microwave remote sensing of boreal and arctic soil temperatures from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 2004-2018 [DOI: 10.1109/TGRS.2007.898436http://dx.doi.org/10.1109/TGRS.2007.898436]
Jonsson P and Eklundh L. 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE transactions on Geoscience and Remote Sensing, 40(8): 1824-1832 [DOI: 10.1109/TGRS.2002.802519http://dx.doi.org/10.1109/TGRS.2002.802519]
Kalma J D, McVicar T R and McCabe M F. 2008. Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29(4): 421-469 [DOI: 10.1007/s10712-008-9037-zhttp://dx.doi.org/10.1007/s10712-008-9037-z]
Kang J, Tan J L, Jin R, Li X and Zhang Y. 2018. Reconstruction of MODIS land surface temperature products based on multi-temporal information. Remote Sensing, 10(7): 1112 [DOI: 10.3390/rs10071112http://dx.doi.org/10.3390/rs10071112]
Kilibarda M, Hengl T, Heuvelink G B, Gräler B, Pebesma E, Perčec Tadić M and Bajat B. 2014. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. Journal of Geophysical Research: Atmospheres, 119(5): 2294-2313 [DOI: 10.1002/2013JD020803http://dx.doi.org/10.1002/2013JD020803]
Kou X K, Jiang L M, Bo Y C, Yan S and Chai L N. 2016. Estimation of land surface temperature through blending MODIS and AMSR-E data with the Bayesian maximum entropy method. Remote Sensing, 8(2): 105 [DOI: 10.3390/rs8020105http://dx.doi.org/10.3390/rs8020105]
Kustas W P, Nieto H, Morillas L, Anderson M C, Alfieri J G, Hipps L E, Villagarcía L, Domingo F and Garcia M. 2016. Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective”. Remote Sensing of Environment, 184: 645-653 [DOI: 10.1016/j.rse.2016.07.024http://dx.doi.org/10.1016/j.rse.2016.07.024]
Lei H M, Gong T T, Zhang Y C and Yang D W. 2018. Biological factors dominate the interannual variability of evapotranspiration in an irrigated cropland in the North China Plain. Agricultural and Forest Meteorology, 250-251, 262-276 [DOI: 10.1016/j.agrformet.2018.01.007http://dx.doi.org/10.1016/j.agrformet.2018.01.007]
Li A H, Bo Y C, Zhu Y X, Guo P, Bi J and He Y Q. 2013a. Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method. Remote Sensing of Environment, 135: 52-63 [DOI: 10.1016/j.rse.2013.03.021http://dx.doi.org/10.1016/j.rse.2013.03.021]
Li H, Yang Y K, Li R B, Wang H S, Cao B, Bian Z J, Hu T, Du Y M, Sun L and Liu Q H. 2019. Comparison of the MuSyQ and MODIS Collection 6 Land surface temperature products over barren surfaces in the Heihe River Basin, China. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 8081-8094 [DOI: 10.1109/TGRS.2019.2918259http://dx.doi.org/10.1109/TGRS.2019.2918259]
Li J, Wang T, Zhang S W and Jiang J S. 2004. Spatial resolution enhancement of microwave radiometer using BG algorithm. Journal of Remote Sensing, 8(5): 409-413
李靖, 王涛, 张升伟, 姜景山. 2004. 利用BG算法提高微波辐射计空间分辨率. 遥感学报, 8(5): 409-413 [DOI: 10.11834/jrs.20040505http://dx.doi.org/10.11834/jrs.20040505]
Li W B, Zhu Y J, Hong G and Zhao B L. 1998. The acquisition of land surface temperature in eastern China Using SSM/I Data. Progress in Natural Science, 8(3): 305-313
李万彪, 朱元竞, 洪刚, 赵柏林. 1998. SSM/I遥感中国东部地面温度. 自然科学进展, 8(3): 305-313
Li X M, Zhou Y Y, Asrar G R and Zhu Z Y. 2018. Creating a seamless 1 km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States. Remote Sensing of Environment, 206: 84-97 [DOI: 10.1016/j.rse.2017.12.010http://dx.doi.org/10.1016/j.rse.2017.12.010]
Li Z L, Tang B H, Wu H, Ren H Z, Yan G J, Wan Z M, Trigo I F and Sobrino J A. 2013b. Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment, 131: 14-37 [DOI: 10.1016/j.rse.2012.12.008http://dx.doi.org/10.1016/j.rse.2012.12.008]
Liang S L, Cheng J, Jia K, Jiang B, Liu Q, Xiao Z Q, Yao Y J, Yuan W P, Zhang X T, Zhao X and Zhou J. 2021. The global Land surface satellite (GLASS) product suite. Bulletin of the American Meteorological Society, 102(2): E323-E337 [DOI: 10.1175/BAMS-D-18-0341.1http://dx.doi.org/10.1175/BAMS-D-18-0341.1]
Liang S L, Wang K C, Zhang X T and Wild M. 2010. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 225-240 [DOI: 10.1109/JSTARS.2010.2048556http://dx.doi.org/10.1109/JSTARS.2010.2048556]
Liu Z H, Wu P H, Duan S B, Zhan W F, Ma X S and Wu Y L. 2017. Spatiotemporal reconstruction of land surface temperature derived from FengYun geostationary satellite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10): 4531-4543 [DOI: 10.1109/JSTARS.2017.2716376http://dx.doi.org/10.1109/JSTARS.2017.2716376]
Long D, Bai L L, Yan L, Zhang C J, Yang W T, Lei H M, Quan J L, Meng X Y and Shi C X. 2019. Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution. Remote Sensing of Environment, 233: 111364 [DOI: 10.1016/j.rse.2019.111364http://dx.doi.org/10.1016/j.rse.2019.111364]
Long D, Yan L, Bai L L, Zhang C J, Li X Y, Lei H M, Yang H B, Tian F Q, Zeng C, Meng X Y and Shi C X. 2020. Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach. Remote Sensing of Environment, 246: 111863 [DOI: 10.1016/j.rse.2020.111863http://dx.doi.org/10.1016/j.rse.2020.111863]
Lu L, Venus V, Skidmore A, Wang T J and Luo G P. 2011. Estimating land-surface temperature under clouds using MSG/SEVIRI observations. International Journal of Applied Earth Observation and Geoinformation, 13(2): 265-276 [DOI: 10.1016/j.jag.2010.12.007http://dx.doi.org/10.1016/j.jag.2010.12.007]
Lu L, Zhang T J, Wang T J and Zhou X M. 2018. Evaluation of Collection-6 MODIS land surface temperature product using multi-year ground measurements in an Arid Area of Northwest China. Remote Sensing, 10(11): 1852 [DOI: 10.3390/rs10111852http://dx.doi.org/10.3390/rs10111852]
Lu X L, Liu R G, Liu J Y and Liang S L. 2007. Removal of noise by wavelet method to generate high quality temporal data of terrestrial MODIS products. Photogrammetric Engineering and Remote Sensing: Journal of the American Society of Photogrammetry, 73(10): 1129-1139
Ma J, Zhou J, Göttsche F M, Liang S L, Wang S F and Li M S. 2020. A global long-term (1981-2000) land surface temperature product for NOAA AVHRR. Earth System Science Data, 12(4): 3247-3268 [DOI: 10.5194/essd-12-3247-2020http://dx.doi.org/10.5194/essd-12-3247-2020]
Ma Y F, Liu S M, Song L S, Xu Z W, Liu Y L, Xu T R and Zhu Z L. 2018. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sensing of Environment, 216: 715-734 [DOI: 10.1016/j.rse.2018.07.019http://dx.doi.org/10.1016/j.rse.2018.07.019]
Mao K B, Shi J C, Li Z L, Qin Z H and Jia Y Y. 2005. The land surface temperature and emissivity retrieved from The AMSR passive microwave data. Remote Sensing for Land and Resources, 17(3): 14-17
毛克彪, 施建成, 李召良, 覃志豪, 贾媛媛. 2005. 用被动微波AMSR数据反演地表温度及发射率的方法研究. 国土资源遥感, 17(3): 14-17 [DOI: 10.3969/j.issn.1001-070X.2005.03.004http://dx.doi.org/10.3969/j.issn.1001-070X.2005.03.004]
Mao K B, Shi J C, Li Z L, Qin Z H, Li M C and Xu B. 2007. A physical-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data. Science in China Series D: Earth Sciences, 50(7): 1115-1120
毛克彪, 施建成, 李召良, 覃志豪, 李满春, 徐斌. 2006. 一个针对被动微波AMSR-E数据反演地表温度的物理统计算法. 中国科学: 地球科学, 36(12): 1170-1176 [DOI: 10.3969/j.issn.1674-7240.2006.12.012http://dx.doi.org/10.3969/j.issn.1674-7240.2006.12.012]
Martins J P A, Trigo I F, Ghilain N, Jimenez C, Göttsche F M, Ermida S L, Olesen F S, Gellens-Meulenberghs F and Arboleda A. 2019. An all-weather land surface temperature product based on MSG/SEVIRI observations. Remote Sensing, 11(24): 3044 [DOI: 10.3390/rs11243044http://dx.doi.org/10.3390/rs11243044]
McFarland M J, Miller R L and Neale C M U. 1990. Land surface temperature derived from the SSM/I passive microwave brightness temperatures. IEEE Transactions on Geoscience and Remote Sensing, 28: 839-845 [DOI: 10.1109/36.58971http://dx.doi.org/10.1109/36.58971]
Meng Q Y, Zhang L L, Sun Z H, Meng F, Wang L and Sun Y X. 2018. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: a 12-year case study in Beijing, China. Remote Sensing of Environment, 204: 826-837 [DOI: 10.1016/j.rse.2017.09.019http://dx.doi.org/10.1016/j.rse.2017.09.019]
Metz M, Rocchini D and Neteler M. 2014. Surface temperatures at the continental scale: tracking changes with remote sensing at unprecedented detail. Remote Sensing, 6(5): 3822-3840 [DOI: 10.3390/rs6053822http://dx.doi.org/10.3390/rs6053822]
Morland J C, Grimes D I F and Hewison T J. 2001. Satellite observations of the microwave emissivity of a semi-arid land surface. Remote Sensing of Environment, 77(2): 149-164 [DOI: 10.1016/S0034-4257(01)00202-4http://dx.doi.org/10.1016/S0034-4257(01)00202-4]
Neteler M. 2010. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sensing, 2(1): 333-351 [DOI: 10.3390/rs1020333http://dx.doi.org/10.3390/rs1020333]
Njoku E G and Li L. 1999. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz. IEEE Transactions on Geoscience and Remote Sensing, 37(1): 79-93 [DOI: 10.1109/36.739125http://dx.doi.org/10.1109/36.739125]
Østby T I, Schuler T V and Westermann S. 2014. Severe cloud contamination of MODIS Land Surface Temperatures over an Arctic ice cap, Svalbard. Remote Sensing of Environment, 142: 95-102 [DOI: 10.1016/j.rse.2013.11.005http://dx.doi.org/10.1016/j.rse.2013.11.005]
Owe M and Van De Griend A A. 2001. On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions. International Journal of Remote Sensing, 22(17): 3521-3532 [DOI: 10.1080/01431160110063788http://dx.doi.org/10.1080/01431160110063788]
Pan G D, Wang C, Zhang W G, Wang H M and Tian G L. 2003. Analysis of seasonal change of land cover characteristics with SSM/I Data in China. Journal of Remote Sensing, 7(6): 498-503
潘广东, 王超, 张卫国, 王红梅, 田国良. 2003. SSM/I微波辐射计数据中国陆地覆盖特征季节变化分析. 遥感学报, 7(6): 498-503
Parinussa R M, de Jeu R A M, Holmes T R H and Walker J P. 2008. Comparison of microwave and infrared land surface temperature products over the NAFE’06 research sites. IEEE Geoscience and Remote Sensing Letters, 5(4): 783-787 [DOI: 10.1109/LGRS.2008.2005738http://dx.doi.org/10.1109/LGRS.2008.2005738]
Prigent C, Jimenez C and Aires F. 2016. Toward “all weather,” long record, and real-time land surface temperature retrievals from microwave satellite observations. Journal of Geophysical Research: Atmospheres, 121(10): 5699-5717 [DOI: 10.1002/2015JD024402http://dx.doi.org/10.1002/2015JD024402]
Prigent C, Rossow W B, Matthews E and Marticorena B. 1999. Microwave radiometric signatures of different surface types in deserts. Journal of Geophysical Research: Atmospheres, 104(D10): 12147-12158 [DOI: 10.1029/1999JD900153http://dx.doi.org/10.1029/1999JD900153]
Qin Z H, Dall’Olmo G, Karnieli A and Berliner P. 2001. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data. Journal of Geophysical Research: Atmospheres, 106(D19): 22655-22670 [DOI: 10.1029/2000JD900452http://dx.doi.org/10.1029/2000JD900452]
Qu Y Q, Zhu Z L, Montzka C, Chai L N, Liu S M, Ge Y, Liu J, Lu Z, He X L, Zheng J and Han T. 2021. Inter-comparison of several soil moisture downscaling methods over the Qinghai-Tibet Plateau, China. Journal of Hydrology, 592: 125616 [DOI: 10.1016/j.jhydrol.2020.125616http://dx.doi.org/10.1016/j.jhydrol.2020.125616]
Quan J L, Chen Y H, Zhan W F, Wang J F, Voogt J and Wang M J. 2014. Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model. Remote Sensing of Environment, 149: 33-46 [DOI: 10.1016/j.rse.2014.03.037http://dx.doi.org/10.1016/j.rse.2014.03.037]
Quan J L, Zhan W F, Ma T, Du Y Y, Guo Z and Qin B Y. 2018. An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes. Remote Sensing of Environment, 206: 403-423 [DOI: 10.1016/j.rse.2017.12.003http://dx.doi.org/10.1016/j.rse.2017.12.003]
Royer A and Poirier S. 2010. Surface temperature spatial and temporal variations in North America from homogenized satellite SMMR-SSM/I microwave measurements and reanalysis for 1979-2008. Journal of Geophysical Research: Atmospheres, 115(D8): D08110 [DOI: 10.1029/2009JD012760http://dx.doi.org/10.1029/2009JD012760]
Scharlemann J P W, Benz D, Hay S I, Purse B V, Tatem A J, Wint G R W and Rogers D J. 2008. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS One, 3(1): e1408 [DOI: 10.1371/journal.pone.0001408http://dx.doi.org/10.1371/journal.pone.0001408]
Schollaert Uz S, Ruane A C, Duncan B N, Tucker C J, Huffman G J, Mladenova I E, Osmanoglu B, Holmes T R H, McNally A, Peters-Lidard C, Bolten J D, Das N, Rodell M, McCartney S, Anderson M C and Doorn B. 2019. Earth observations and integrative models in support of food and water security. Remote Sensing in Earth Systems Sciences, 2(1): 18-38 [DOI: 10.1007/s41976-019-0008-6http://dx.doi.org/10.1007/s41976-019-0008-6]
Semmens K A, Anderson M C, Kustas W P, Gao F, Alfieri J G, McKee L, Prueger J H, Hain C R, Cammalleri C, Yang Y, Xia T, Sanchez L, Mar Alsina M and Vélez M. 2016. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sensing of Environment, 185: 155-170 [DOI: 10.1016/j.rse.2015.10.025http://dx.doi.org/10.1016/j.rse.2015.10.025]
Sheffield J, Wood E F, Pan M, Beck H, Coccia G, Serrat-Capdevila A and Verbist K. 2018. Satellite remote sensing for water resources management: potential for supporting sustainable development in data-poor regions. Water Resources Research, 54(12): 9724-9758 [DOI: 10.1029/2017WR022437http://dx.doi.org/10.1029/2017WR022437]
Shen H F, Huang L W, Zhang L P, Wu P H and Zeng C. 2016. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: a 26-year case study of the city of Wuhan in China. Remote Sensing of Environment, 172: 109-125 [DOI: 10.1016/j.rse.2015.11.005http://dx.doi.org/10.1016/j.rse.2015.11.005]
Shwetha H R and Kumar D N. 2016. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN. ISPRS Journal of Photogrammetry and Remote Sensing, 117: 40-55 [DOI: 10.1016/j.isprsjprs.2016.03.011http://dx.doi.org/10.1016/j.isprsjprs.2016.03.011]
Sobrino J A, Jiménez-Muñoz J C, Sòria G, Ruescas A B, Danne O, Brockmann C, Ghent D, Remedios J, North P, Merchant C, Berger M, Mathieu P P and Göttsche F M. 2016. Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data. Remote Sensing of Environment, 179: 149-161 [DOI: 10.1016/j.rse.2016.03.035http://dx.doi.org/10.1016/j.rse.2016.03.035]
Song L S, Liu S M, Kustas W P, Nieto H, Sun L, Xu Z W, Skaggs T H, Yang Y, Ma M G, Xu T R, Tang X G and Li Q P. 2018. Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale. Remote Sensing of Environment, 219: 72-88 [DOI: 10.1016/j.rse.2018.10.002http://dx.doi.org/10.1016/j.rse.2018.10.002]
Sruthi S and Aslam M A M. 2015. Agricultural drought analysis using the NDVI and Land surface temperature data; a case study of raichur district. Aquatic Procedia, 4: 1258-1264
Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Dordrecht: Springer [DOI: 10.1007/978-94-009-3027-8http://dx.doi.org/10.1007/978-94-009-3027-8]
Sun L, Anderson M C, Gao F, Hain C, Alfieri J G, Sharifi A, McCarty G W, Yang Y, Yang Y, Kustas W P and McKee L, 2017a. Investigating water use over the Choptank River Watershed using a multisatellite data fusion approach. Water Resources Research, 53(7): 5298-5319 [DOI: 10.1002/2017WR020700http://dx.doi.org/10.1002/2017WR020700]
Sun L, Chen Z X, Gao F, Anderson M, Song L S, Wang L M, Hu B and Yang Y, 2017b. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data. Computers and Geosciences, 105: 10-20 [DOI: 10.1016/j.cageo.2017.04.007http://dx.doi.org/10.1016/j.cageo.2017.04.007]
Tagesson T, Horion S, Nieto H, Zaldo Fornies V, Mendiguren González G, Bulgin C E, Ghent D and Fensholt R. 2018. Disaggregation of SMOS soil moisture over West Africa using the Temperature and Vegetation Dryness Index based on SEVIRI land surface parameters. Remote Sensing of Environment, 206: 424-441 [DOI: 10.1016/j.rse.2017.12.036http://dx.doi.org/10.1016/j.rse.2017.12.036]
Tang W B, Xue D J, Long Z Y, Zhang X D and Zhou J. 2021. Near-real-time estimation of 1-km all-weather land surface temperature by integrating satellite passive microwave and thermal infrared observations. IEEE Geoscience and Remote Sensing Letters, 19: 7001305 [DOI: 10.1109/LGRS.2021.3067908http://dx.doi.org/10.1109/LGRS.2021.3067908]
Tomlinson C J, Chapman L, Thornes J E and Baker C. 2011. Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Applications, 18(3): 296-306 [DOI: 10.1002/met.287http://dx.doi.org/10.1002/met.287]
Trigo I F, Monteiro I T, Olesen F and Kabsch E. 2008. An assessment of remotely sensed land surface temperature. Journal of Geophysical Research: Atmospheres, 113(D17): D17108 [DOI: 10.1029/2008JD010035http://dx.doi.org/10.1029/2008JD010035]
Udahemuka G, Van den Bergh F, Van Wyk B J and Van Wyk M A. 2008. Robust fitting of diurnal brightness temperature cycles: pattern recognition special edition. South African Computer Journal, 2008(40): 31-36
Voogt J A and Oke T R. 2003. Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3): 370-384 [doi: 10.1016/S0034-4257(03)00079-8http://dx.doi.org/10.1016/S0034-4257(03)00079-8]
Wan Z M. 2008. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sensing of Environment, 112(1): 59-74 [DOI: 10.1016/j.rse.2006.06.026http://dx.doi.org/10.1016/j.rse.2006.06.026]
Wan Z M. 2014. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140: 36-45 [DOI: 10.1016/j.rse.2013.08.027http://dx.doi.org/10.1016/j.rse.2013.08.027]
Wan Z M and Dozier J. 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905 [DOI: 10.1109/36.508406http://dx.doi.org/10.1109/36.508406]
Wang K C and Liang S L. 2009. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface Longwave radiation observations at SURFRAD sites. Remote Sensing of Environment, 113(7): 1556-1565 [DOI: 10.1016/j.rse.2009.03.009http://dx.doi.org/10.1016/j.rse.2009.03.009]
Wang S F, Zhou J, Lei T J, Wu H, Zhang X D, Ma J and Zhong H L. 2020. Estimating land surface temperature from satellite passive microwave observations with the traditional neural network, deep belief network, and convolutional neural network. Remote Sensing, 12(17): 2691 [DOI: 10.3390/rs12172691http://dx.doi.org/10.3390/rs12172691]
Weiss D J, Atkinson P M, Bhatt S, Mappin B, Hay S I and Gething P W. 2014. An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98: 106-118 [DOI: 10.1016/j.isprsjprs.2014.10.001http://dx.doi.org/10.1016/j.isprsjprs.2014.10.001]
Weng Q H and Fu P. 2014. Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data. Remote Sensing of Environment, 140: 267-278 [DOI: 10.1016/j.rse.2013.09.002http://dx.doi.org/10.1016/j.rse.2013.09.002]
Wentz F J, Gentemann C, Smith D and Chelton D. 2000. Satellite measurements of sea surface temperature through clouds. Science, 288(5467): 847-850 [DOI: 10.1126/science.288.5467.847http://dx.doi.org/10.1126/science.288.5467.847]
Wilson A M and Jetz W. 2016. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biology, 14(3): e1002415 [DOI: 10.1371/journal.pbio.1002415http://dx.doi.org/10.1371/journal.pbio.1002415]
Wu P H, Shen H F, Zhang L P and Göttsche F M. 2015. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature. Remote Sensing of Environment, 156: 169-181 [DOI: 10.1016/j.rse.2014.09.013http://dx.doi.org/10.1016/j.rse.2014.09.013]
Wu P H, Yin Z X, Zeng C, Duan S B, Göttsche F M, Ma X S, Li X H, Yang H and Shen H. 2021. Spatially continuous and high-resolution land surface temperature product generation: a review of reconstruction and spatiotemporal fusion techniques. IEEE Geoscience and Remote Sensing Magazine, 9(3): 112-137 [DOI: 10.1109/MGRS.2021.3050782http://dx.doi.org/10.1109/MGRS.2021.3050782]
Xia H P, Chen Y H, Li Y and Quan J L. 2019. Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures. Remote Sensing of Environment, 224: 259-274 [DOI: 10.1016/j.rse.2019.02.006http://dx.doi.org/10.1016/j.rse.2019.02.006]
Xu S and Cheng J. 2021. A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering. Remote Sensing of Environment, 254: 112256 [DOI: 10.1016/j.rse.2020.112256http://dx.doi.org/10.1016/j.rse.2020.112256]
Xu S, Cheng J and Zhang Q. 2019. Reconstructing all-weather land surface temperature using the Bayesian Maximum entropy method over the Tibetan Plateau and Heihe River Basin. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9): 3307-3316 [DOI: 10.1109/JSTARS.2019.2921924http://dx.doi.org/10.1109/JSTARS.2019.2921924]
Yang G, Sun W W, Shen H F, Meng X C and Li J L. 2019. An integrated method for reconstructing daily MODIS land surface temperature data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(3): 1026-1040 [DOI: 10.1109/JSTARS.2019.2896455http://dx.doi.org/10.1109/JSTARS.2019.2896455]
Yoo C, Im J, Cho D, Yokoya N, Xia J S and Bechtel B. 2020. Estimation of all-weather 1 km MODIS Land surface temperature for humid summer days. Remote Sensing, 12(9): 1398 [DOI: 10.3390/rs12091398http://dx.doi.org/10.3390/rs12091398]
Yu Y Y, Privette J L and Pinheiro A C. 2008. Evaluation of split-window land surface temperature algorithms for generating climate data records. IEEE Transactions on Geoscience and Remote Sensing, 46(1): 179-192 [DOI: 10.1109/TGRS.2007.909097http://dx.doi.org/10.1109/TGRS.2007.909097]
Zeng C, Shen H F, Zhong M L, Zhang L P and Wu P H. 2015. Reconstructing MODIS LST based on multitemporal classification and robust regression. IEEE Geoscience and Remote Sensing Letters, 12(3): 512-516 [DOI: 10.1109/LGRS.2014.2348651http://dx.doi.org/10.1109/LGRS.2014.2348651]
Zhan W F, Zhou J, Ju W M, Li M C, Sandholt I, Voogt J and Yu C. 2014. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: an analytical three-time-scale model. Remote Sensing of Environment, 143: 1-14 [DOI: 10.1016/J.RSE.2013.12.004http://dx.doi.org/10.1016/J.RSE.2013.12.004]
Zhang A Z and Jia G S. 2013. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment, 134: 12-23 [DOI: 10.1016/j.rse.2013.02.023http://dx.doi.org/10.1016/j.rse.2013.02.023]
Zhang C J, Long D, Zhang Y C, Anderson M C, Kustas W P and Yang Y. 2021a. A decadal (2008-2017) daily evapotranspiration data set of 1 km spatial resolution and spatial completeness across the North China Plain using TSEB and data fusion. Remote Sensing of Environment, 262: 112519 [DOI: 10.1016/j.rse.2021.112519http://dx.doi.org/10.1016/j.rse.2021.112519]
Zhang G L, Xiao X M, Dong J W, Kou W L, Jin C, Qin Y W, Zhou Y T, Wang J, Menarguez M A and Biradar C. 2015. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS Journal of Photogrammetry and Remote Sensing, 106: 157-171 [DOI: 10.1016/j.isprsjprs.2015.05.011http://dx.doi.org/10.1016/j.isprsjprs.2015.05.011]
Zhang L F, Jiao W Z, Zhang H M, Huang C P and Tong Q X. 2017. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sensing of Environment, 190: 96-106 [DOI: 10.1016/j.rse.2016.12.010http://dx.doi.org/10.1016/j.rse.2016.12.010]
Zhang X D. 2020. Estimation of All-weather Land Surface Temperature from Multi-source Satellite Remote Sensing Observations. Chengdu: University of Electronic Science and Technology of China (张晓东. 2020. 多源遥感协同下的全天候地表温度估算研究. 成都: 电子科技大学) [DOI: 10.27005/d.cnki.gdzku.2020.004684]
Zhang X D, Zhou J, Göttsche F M, Zhan W F, Liu S M and Cao R Y. 2019. A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations. IEEE Transactions on Geoscience and Remote Sensing, 57(7): 4670-4691 [DOI: 10.1109/TGRS.2019.2892417http://dx.doi.org/10.1109/TGRS.2019.2892417]
Zhang X D, Zhou J, Liang S L, Chai L N, Wang D D and Liu J. 2020. Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data. ISPRS Journal of Photogrammetry and Remote Sensing, 167: 321-344 [DOI: 10.1016/j.isprsjprs.2020.07.014http://dx.doi.org/10.1016/j.isprsjprs.2020.07.014]
Zhang X D, Zhou J, Liang S L and Wang D D. 2021b. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sensing of Environment, 260: 112437 [DOI: 10.1016/j.rse.2021.112437http://dx.doi.org/10.1016/j.rse.2021.112437]
Zhao T J, Zhang L X, Shi J C and Jiang L M. 2011. A physically based statistical methodology for surface soil moisture retrieval in the Tibet Plateau using microwave vegetation indices. Journal of Geophysical Research: Atmospheres, 116(D8) [DOI: 10.1029/2010JD015229]
Zhao W and Duan S B. 2020. Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data. Remote Sensing of Environment, 247: 111931 [DOI: 10.1016/j.rse.2020.111931http://dx.doi.org/10.1016/j.rse.2020.111931]
Zhou F C, Song X N and Li Z L. 2014. Progress of land surface temperature retrieval based on passive microwave remote sensing. Remote Sensing for Land and Resources, 26(1): 1-7
周芳成, 宋小宁, 李召良. 2014. 地表温度的被动微波遥感反演研究进展. 国土资源遥感, 26(1): 1-7
Zhou J, Chen Y H, Zhang X and Zhan W F. 2013. Modelling the diurnal variations of urban heat islands with multi-source satellite data. International Journal of Remote Sensing, 34(21): 7568-7588 [DOI: 10.1080/01431161.2013.821576http://dx.doi.org/10.1080/01431161.2013.821576]
Zhou J, Dai F N, Zhang X D, Zhao S J and Li M S. 2015. Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass. International Journal of Applied Earth Observation and Geoinformation, 34: 35-50 [DOI: 10.1016/j.jag.2014.07.001http://dx.doi.org/10.1016/j.jag.2014.07.001]
Zhou J, Liang S L, Cheng J, Wang Y J and Ma J. 2019. The GLASS land surface temperature product. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(2): 493-507 [DOI: 10.1109/JSTARS.2018.2870130http://dx.doi.org/10.1109/JSTARS.2018.2870130]
Zhou J, Zhang X D, Zhan W F, Gottsche F M, Liu S M, Olesen F S, Hu W X and Dai F N. 2017a. A thermal sampling depth correction method for land surface temperature estimation from satellite passive microwave observation over Barren Land. IEEE Transactions on Geoscience and Remote Sensing, 55(8): 4743-4756 [DOI: 10.1109/TGRS.2017.2698828http://dx.doi.org/10.1109/TGRS.2017.2698828]
Zhou L M, Tian Y H, Baidya Roy S, Thorncroft C, Bosart L F and Hu Y L. 2012. Impacts of wind farms on land surface temperature. Nature Climate Change, 2(7): 539-543 [DOI: 10.1038/nclimate1505http://dx.doi.org/10.1038/nclimate1505]
Zhou W, Peng B and Shi J C. 2017b. Reconstructing spatial–temporal continuous MODIS land surface temperature using the DINEOF method. Journal of Applied Remote Sensing, 11(4): 046016 [DOI: 10.1117/1.jrs.11.046016http://dx.doi.org/10.1117/1.jrs.11.046016]
Zhu X L, Chen J, Gao F, Chen X H and Masek J G. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11): 2610-2623 [DOI: 10.1016/j.rse.2010.05.032http://dx.doi.org/10.1016/j.rse.2010.05.032]
Zhu X L, Helmer E H, Gao F, Liu D S, Chen J and Lefsky M A. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172: 165-177 [DOI: 10.1016/j.rse.2015.11.016http://dx.doi.org/10.1016/j.rse.2015.11.016]
相关作者
相关机构