改进全卷积网络方法的高分二号影像农村道路提取
Road extraction in rural areas from high resolution remote sensing image using a improved Full Convolution Network
- 2021年25卷第9期 页码:1978-1988
纸质出版日期: 2021-09-07
DOI: 10.11834/jrs.20219209
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-09-07 ,
扫 描 看 全 文
李朝奎,曾强国,方军,吴馁,武凯华.2021.改进全卷积网络方法的高分二号影像农村道路提取.遥感学报,25(9): 1978-1988
LI C K,Zeng Q G,Fang J,Wu N and Wu K H. 2021. Road extraction in rural areas from high resolution remote sensing image using a improved Full Convolution Network. National Remote Sensing Bulletin, 25(9):1978-1988
针对目前利用高分遥感数据提取农村道路的研究与应用少,提取结果精准度不够的问题,提出了结合空洞卷积和ASPP(Atrous Spatial Pyramid Pooling)结构的改进全卷积农村道路提取网络模型DC-Net(Dilated Convolution Network)。该模型基于全卷积的编解码结构来提取道路深度特征信息,同时针对农村道路细长的特点,在解编码层之间加入了以空洞卷积为基础的ASPP(Atrous Spatial Pyramid Pooling)结构来提取道路的多尺度特征信息,在不牺牲特征空间分辨率的同时扩大了特征感受野FOV(Field-of-View),从而提高细窄农村道路的识别率。以长株潭城市群郊区部分区域为试验对象,以高分二号国产卫星遥感影像为实验数据,将本文提出的方法与经典的几种全卷积网络方法进行实验结果对比分析。实验结果表明:(1)本文所提出的道路提取模型DC-Net在农村道路的提取上具有可行性,整体提取平均精度达到98.72%,具有较高的提取精度;(2)对比几种经典的全卷积网络模型在农村道路提取上的效果,DC-Net在农村道路提取的精度和连结性、以及树木和阴影的遮挡方面,均表现出了较好的提取结果;(3)本文提出的改进全卷积网络道路提取模型能够有效地提取高分辨率遥感影像中农村道路的特征信息,总体提取效果较好,为提高基于国产高分影像的农村道路提取精度提供了一种新的思路和方法。
Aiming at the problems of limited research
application of extracting rural roads with high-resolution remote sensing data
and insufficient accuracy of extraction results
a new improved full convolution rural road extraction network model Distributed Convolution network (DC net) is proposed; it combines void convolution and Air Spatial Pyramid Pooling (ASPP) structure. The model extracts the depth feature information of the road based on the full convolution encoding and decoding structures. At the same time
in accordance with the characteristics of the slender rural roads
the ASPP structure based on the hollow convolution is added between the decoded layers to extract the multiscale characteristic information of the road
and the Field of View (FOV) is expanded without sacrificing the spatial resolution of the feature
thereby improving the recognition rate of narrow and fine rural roads. Some suburban areas of Changzhutan city group are considered the experimental objects and the domestic satellite remote sensing image of Gaogaoer as the experimental data. Experimental results are compared with those of the classical methods of all convolution networks. The results show that: (1) the proposed road extraction model DC net is feasible in rural road extraction
with the overall extraction average accuracy reaching 98.72%
indicating high extraction accuracy; (2) comparative results of the effect of several classic full convolution network models on rural road extraction
DC net extraction accuracy and connectivity
as well as tree and shadow shading in the aspect of block are acceptable; (3) the improved road extraction model of the entire proposed convolution network can effectively extract the feature information of rural roads in high-resolution remote sensing images. The overall extraction effect is improved; it provides a new approach for improving the precision of rural road extraction based on domestic high-resolution images.
Based on the full convolution network model in deep learning
this paper proposes an improved full convolution rural road extraction model DC net which combines hole convolution and ASPP structure. According to the characteristics of long and thin and connectivity of rural roads
this method combined with hole convolution to expand the receptive field of feature map in the process of model training
which makes the extraction of rural roads more complete.
全卷积网络DC-Net空洞卷积ASPP农村道路提取
full convolution networkdilated convolution networkatrous convolutionASPPrural road extraction
Chaurasia A and Culurciello E. 2017. LinkNet: exploiting encoder representations for efficient semantic segmentation//2017 IEEE Visual Communications and Image Processing (VCIP). St. Petersburg, FL, USA: IEEE: 1-4 [DOI: 10.1109/VCIP.2017.8305148http://dx.doi.org/10.1109/VCIP.2017.8305148]
Chen L C, Papandreou G, Schroff F and Adam H. 2017. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv: 1706.05587
Chen L C, Zhu Y K, Papandreou G, Schroff F and Adam H. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv preprint arXiv: 1802.02611
Cheng G L, Wang Y, Xu S B, Wang H Z, Xiang S M and Pan C H. 2017. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 55(6): 3322-3337 [DOI: 10.1109/TGRS.2017.2669341http://dx.doi.org/10.1109/TGRS.2017.2669341]
Dai J G, Du Y, Fang X X, Wang Y and Miao Z P. 2018. Road extraction method for high resolution optical remote sensing images with multiple feature constraints. Journal of Remote Sensing, 22(5): 777-791
戴激光, 杜阳, 方鑫鑫, 王杨, 苗志鹏. 2018. 多特征约束的高分辨率光学遥感影像道路提取. 遥感学报, 22(5): 777-791 [DOI: 10.11834/jrs.20188055http://dx.doi.org/10.11834/jrs.20188055]
Deng J, Dong W, Socher R, Li L J, Li K and Fei-Fei L. 2009. ImageNet: a large-scale hierarchical image database//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE: 248-255 [DOI: 10.1109/CVPR.2009.5206848http://dx.doi.org/10.1109/CVPR.2009.5206848]
Doshi J. 2018. Residual inception skip network for binary segmentation//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, UT, USA: IEEE: 216-219 [DOI: 10.1109/CVPRW.2018.00037http://dx.doi.org/10.1109/CVPRW.2018.00037]
Glorot X, Bordes A and Bengio Y. 2011. Deep sparse rectifier neural networks//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, FL, USA: PMLR: 315-323
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE: 770-778
Heipke C, Mayer H, Wiedemann C and Jamet D. 1997. Evaluation of automatic road extraction. International Archives of Photogrammetry and Remote Sensing, 32:151-161
Hu W, Huang Y Y, Wei L, Zhang F and Li H C. 2015. Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015: 258619 [DOI: 10.1155/2015/258619http://dx.doi.org/10.1155/2015/258619]
Ioffe S and Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv: 1502.03167
Li C. 2018. Application of remote sensing technology in rural road verification. Geomatics and Spatial Information Technology, 41(5): 48-49, 52
李程. 2018. 遥感技术在农村公路核查中的应用研究. 测绘与空间地理信息, 41(5): 48-49, 52
Li Y, Guo L L, Rao J, Xu L L and Jin S. 2019. Road segmentation based on hybrid convolutional network for high-resolution visible remote sensing image. IEEE Geoscience and Remote Sensing Letters, 16(4): 613-617 [DOI: 10.1109/LGRS.2018.2878771http://dx.doi.org/10.1109/LGRS.2018.2878771]
Lin X G, Zhang J X, Li H T and Yang Y H. 2009. Semi-automatic extraction of ribbon road from high resolution remotely sensed imagery by a T-shaped template matching. Geomatics and Information Science of Wuhan University, 34(3): 293-296
林祥国, 张继贤, 李海涛, 杨景辉. 2009. 基于T型模板匹配半自动提取高分辨率遥感影像带状道路. 武汉大学学报(信息科学版), 34(3): 293-296
Liu X, Wang G H, Yang H C, Liu Y and Wang Y. 2018. Road extraction from remote sensing image based on fully convolutional networks. Remote Sensing Information, 33(1): 69-75
刘笑, 王光辉, 杨化超, 刘宇, 王耀. 2018. 全卷积神经网络遥感影像道路提取方法. 遥感信息, 33(1): 69-75 [DOI: 10.3969/j.issn.1000-3177.2018.01.011http://dx.doi.org/10.3969/j.issn.1000-3177.2018.01.011]
Martin D R, Fowlkes C C and Malik J. 2004. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5): 530-549 [DOI: 10.1109/TPAMI.2004.1273918http://dx.doi.org/10.1109/TPAMI.2004.1273918]
Papadomanolaki M, Vakalopoulou M and Karantzalos K. 2017. Patch-based deep learning architectures for sparse annotated very high resolution datasets//2017 Joint Urban Remote Sensing Event. Dubai, United Arab Emirates: IEEE: 1-4 [DOI: 10.1109/JURSE.2017.7924538http://dx.doi.org/10.1109/JURSE.2017.7924538]
Xu Y Y, Xie Z, Feng Y X and Chen Z L. 2018. Road extraction from high-resolution remote sensing imagery using deep learning. Remote Sensing, 10(9): 1461 [DOI: 10.3390/rs10091461http://dx.doi.org/10.3390/rs10091461]
Yi W B, Chen Y H, Tang H and Deng L. 2010. Experimental research on urban road extraction from high-resolution RS images using Probabilistic Topic Models//2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE: 445-448 [DOI: 10.1109/IGARSS.2010.5650966http://dx.doi.org/10.1109/IGARSS.2010.5650966]
Zeiler M D, Taylor G W and Fergus R. 2015. Adaptive deconvolutional networks for mid and high level feature learning//2011 International Conference on Computer Vision. Barcelona, Spain: IEEE: 2018-2025 [DOI: 10.1109/ICCV.2011.6126474http://dx.doi.org/10.1109/ICCV.2011.6126474]
Zhang R, Zhang J X and Li H T. 2008. Semi-automatic extraction of ribbon roads from high resolution remotely sensed imagery based on angular texture signature and profile match. Journal of Remote Sensing, 12(2): 224-232
张睿, 张继贤, 李海涛. 2008. 基于角度纹理特征及剖面匹配的高分辨率遥感影像带状道路半自动提取. 遥感学报, 12(2): 224-232 [DOI: 10.11834/jrs.20080229http://dx.doi.org/10.11834/jrs.20080229]
Zhang Z X, Liu Q J and Wang Y H. 2018. Road extraction by deep residual U-net. IEEE Geoscience and Remote Sensing Letters, 15(5): 749-753 [DOI: 10.1109/LGRS.2018.2802944http://dx.doi.org/10.1109/LGRS.2018.2802944]
Zhong Z L, Li J, Cui W H and Jiang H. 2016. Fully convolutional networks for building and road extraction: preliminary results//2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE: 1591-1594 [DOI: 10.1109/IGARSS.2016.7729406http://dx.doi.org/10.1109/IGARSS.2016.7729406]
Zhou L C, Zhang C and Wu M. 2018. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, UT, USA: IEEE: 182-186 [DOI: 10.1109/CVPRW.2018.00034http://dx.doi.org/10.1109/CVPRW.2018.00034]
相关文章
相关作者
相关机构