三种卫星云量数据在青藏高原地区的比对分析
Performance of cloud fraction of three satellite cloud climate date records over the Tibetan Plateau
- 2021年25卷第7期 页码:1445-1459
纸质出版日期: 2021-07-07
DOI: 10.11834/jrs.20219262
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-07-07 ,
扫 描 看 全 文
刘健.2021.三种卫星云量数据在青藏高原地区的比对分析.遥感学报,25(7): 1445-1459
Liu J. 2021. Performance of cloud fraction of three satellite cloud climate date records over the Tibetan Plateau. National Remote Sensing Bulletin, 25(7):1445-1459
青藏高原是卫星反演云参数的热点和难点区域。选取1982年—2015年0.1°空间分辨率的Patmos-x、0.25°空间分辨率的CLARA-A2的NOAA/AVHRR下午星数据和2003年—2015年0.05°空间分辨率的Aqua/MODIS C6等3种云量数据,针对青藏高原区域,从数据的反演算法和数据的空间属性出发,进行比对分析。Patmos-x和CLARA-A2具有相同的数据源和相近的云检测算法。与地面观测云量相比,Patmos-x云量与地面观测云量间的相关性大于0.8,MODIS次之,CLARA-A2云量与地面观测云量的相关性很弱。3种数据均表现出高原东部云量多于西部云量,北部云量多于南部的云量空间分布特征和白天云量大于夜间云量的时间分布特征。量值上CLARA-A2云量大于Patmos-x。2003年—2015 年夜间Aqua/MODIS 年均云量比CLARA-A2高8.82%。34年间Patmos-x和CLARA-A2年均云量以减少为主,夜间云量的变化趋势比白天云量变化趋势明显,CLARA-A2云量的变化趋势较Patmos-x明显。2000年是高原区域云量由偏多到偏少变化的拐点。1、4、10月多年云量以减少为主要变化趋势,7月云量以弱增多为主要变化特征。
Tibetan Plateau (TP) plays an important role in adjusting the large-scale atmospheric circulation in the northern hemisphere and the atmosphere–sea interaction from the equator to the middle latitude in the North Pacific. Obtaining complete observation data based on ground observations over TP is difficult. Satellite provides good observational data over the Tibetan Plateau. Considering the complex underlying surface types and geographical elevations in the Tibetan Plateau region
three kinds of long-term cloud fraction data that came from PATMOS-x/AVHRR
CLARA-A2/AVHRR
and MODIS / Aqua were analyzed from the perspective of data retrieval methods and data spatial attributes.
The relationship among the three kinds of satellite cloud fraction and the ground observation cloud fraction was analyzed at first. Correlation analysis
linear trend
and accumulate bias were used to analyze the data. The analysis data were selected from instantaneous orbital observations and monthly and annual mean value.
The annual mean cloud fraction of the three kinds of data are similar
but seasonal cloud fraction is different. CLARA-A2 has the smallest cloud fraction in summer and the highest cloud fraction in winter. Patmos-x agreed well with the ground observation. The correlation relationship between CLARA-A2 and ground was weak. Aqua/MODIS had good relationship in autumn and less correlation in spring and summer.
The three kinds of long-term cloud fraction data showed similar spatial and temporal distribution. During daytime
CLARA-A2 has larger cloud fraction than MODIS and PATMOS-x. At nighttime
MODIS has the maximum cloud fraction value
and PATMOS-x and CLARA-A2 have similar values. All three kinds of cloud data committed a mistake with snow along the ridge of a mountain. The linear regression and accumulate bias analysis showed that the annual mean cloud fraction of PATMOS-x and CLARA-A2 displayed a decreasing trend from 1982 to 2015. The trend of the night time cloud fraction was more obvious than that of daytime. CLARA-A2 displayed more obvious trend than PATMOS-x
especially at night. The year of 2000 is a turning point for the change in cloud cover over the plateau area from high to low. In January
April
and October
the decrease in cloud amount is the main change trend. Meanwhile
in July
the weak increase is the main change characteristic.
Three kinds of satellite cloud data have good comparability. Three kinds of data obtained different correlations when compared with the ground observation. The reasons may come from matched data with different spatial and temporal characteristics
different payloads with various observation abilities and different data set with different cloud detection algorithms.
The stability of satellite orbit and high quality of instrument calibration are the baselines of long-term climate data. MODIS has stable instrument orbit and calibration. Thus
its long term cloud data have good homogeneity.
云量卫星气候数据青藏高原Patmos-xCLARA-A2MODIS
cloud fractionsatelliteclimate data recordsTibetan PlateauPatmos-xCLARA-A2MODIS
Ackerman S, Frey R, Strabala K, Liu Y H, Gumley L, Baum B and Menzel P. 2010. Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35). https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD35_ATBD_Collection6_0.pdf [2019-07-30]
Ackerman S A, Holz R E, Frey R, Eloranta E W, Maddux B C and McGill M. 2008. Cloud detection with MODIS. Part II: validation. Journal of Atmospheric and Oceanic Technology, 25(7): 1073-1086 [DOI: 10.1175/2007JTECHA1053.1http://dx.doi.org/10.1175/2007JTECHA1053.1]
Bao S H, Letu H, Zhao J, Shang H Z, Lei Y H, Duan A M, Chen B, Bao Y H, He J, Wang T X, Ji D B, Tana G and Shi J C. 2019. Spatiotemporal distributions of cloud parameters and their response to meteorological factors over the Tibetan Plateau during 2003-2015 based on MODIS data. International Journal of Climatology, 39(1): 532-543 [DOI: 10.1002/joc.5826http://dx.doi.org/10.1002/joc.5826]
Baum B A, Menzel W P, Frey R A, Tobin D C, Holz R E, Ackerman S A, Heidinger A K and Yang P. 2012. MODIS cloud-top property refinements for collection 6. Journal of Applied Meteorology and Climatology, 51(6): 1145-1163 [DOI: 10.1175/JAMC-D-11-0203.1http://dx.doi.org/10.1175/JAMC-D-11-0203.1]
Cao Y, He Y J, Qiu X F, Zeng Y, Luo Q Z and Gao T. 2012. Correction methods of MODIS cloud product based on ground observation data. Journal of Remote Sensing, 16(2): 325-342
曹芸, 何永健, 邱新法, 曾燕, 罗庆洲, 高婷. 2012. 基于地面观测资料的MODIS云量产品订正. 遥感学报, 16(2): 325-342 [DOI: 10.11834/jrs.20102368http://dx.doi.org/10.11834/jrs.20102368]
Chen B D and Liu X D. 2005. Seasonal migration of cirrus clouds over the Asian monsoon Regions and the Tibetan Plateau measured from MODIS/Terra. Geophysical Research Letters, 32(1): L01804 [DOI: 10.1029/2004GL020868http://dx.doi.org/10.1029/2004GL020868]
Duan A M and Wu G X. 2006. Change of cloud amount and the climate warming on the Tibetan Plateau. Geophysical Research Letters, 33(22): L22704 [DOI: 10.1029/2006GL027946http://dx.doi.org/10.1029/2006GL027946]
Duan A M, Wu G X, Liu Y M, Ma Y M and Zhao P. 2012. Weather and climate effects of the Tibetan Plateau. Advances in Atmospheric Sciences, 29(5): 978-992 [DOI: 10.1007/s00376-012-1220-yhttp://dx.doi.org/10.1007/s00376-012-1220-y]
Fontana F, Lugrin D, Seiz G, Meier M and Foppa N. 2013. Intercomparison of satellite- and ground-based cloud fraction over Switzerland (2000-2012). Atmospheric Research, 128: 1-12 [DOI: 10.1016/j.atmosres.2013.01.013http://dx.doi.org/10.1016/j.atmosres.2013.01.013]
Foster M J and Heidinger A. 2013. PATMOS-x: results from a diurnally corrected 30-yr satellite cloud climatology. Journal of Climate, 26(2): 414-425 [DOI: 10.1175/JCLI-D-11-00666.1http://dx.doi.org/10.1175/JCLI-D-11-00666.1]
Gao B C, Yang P, Guo G, Park S K, Wiscombe W J and Chen B D. 2003. Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument. IEEE Transactions on Geoscience and Remote Sensing, 41(4): 895-900 [DOI: 10.1109/TGRS.2003.810704http://dx.doi.org/10.1109/TGRS.2003.810704]
Heidinger A, Foster M, Botambekov D, Hiley M, Walther A and Li Y. 2016. Using the NASA EOS A-train to probe the performance of the NOAA PATMOS-x cloud fraction CDR. Remote Sensing, 8(6): 511 [DOI: 10.3390/rs8060511http://dx.doi.org/10.3390/rs8060511]
Heidinger A K, Evan A T, Foster M J and Walther A. 2012. A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. Journal of Applied Meteorology and Climatology, 51(6): 1129-1144 [DOI: 10.1175/JAMC-D-11-02.1http://dx.doi.org/10.1175/JAMC-D-11-02.1]
Heidinger A K, Foster M J, Walther A and Zhao X P. 2014. The pathfinder atmospheres-extended AVHRR climate dataset. Bulletin of the American Meteorological Society, 95(6): 909-922 [DOI: 10.1175/BAMS-D-12-00246.1http://dx.doi.org/10.1175/BAMS-D-12-00246.1]
Karlsson K G, Anttila K, Trentmann J, Stengel M, Meirink J F, Devasthale A, Hanschmann T, Kothe S, Jääskeläinen E, Sedlar J, Benas N, van Zadelhoff G J, Schlundt C, Stein D, Finkensieper S, Håkansson N and Hollmann R. 2017. CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmospheric Chemistry and Physics, 17(9): 5809-5828 [DOI: 10.5194/acp-17-5809-2017http://dx.doi.org/10.5194/acp-17-5809-2017]
Karlsson K G, Riihelä A, Müller R, Meirink J F, Sedlar J, Stengel M, Lockhoff M, Trentmann J, Kaspar F, Hollmann R and Wolters E. 2013. CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmospheric Chemistry and Physics, 13(10): 5351-5367 [DOI: 10.5194/acp-13-5351-2013http://dx.doi.org/10.5194/acp-13-5351-2013]
King M D, Platnick S, Menzel W P, Ackerman S A and Hubanks P A. 2013. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Transactions on Geoscience and Remote Sensing, 51(7): 3826-3852 [DOI: 10.1109/TGRS.2012.2227333http://dx.doi.org/10.1109/TGRS.2012.2227333]
Kotarba A Z. 2009. A comparison of MODIS-derived cloud amount with visual surface observations. Atmospheric Research, 92(4): 522-530 [DOI: 10.1016/j.atmosres.2009.02.001http://dx.doi.org/10.1016/j.atmosres.2009.02.001]
Liu Y M, Hoskins B and Blackburn M. 2007. Impact of Tibetan orography and heating on the summer flow over Asia. Journal of the Meteorological Society of Japan, 85B: 1-19 [DOI: 10.2151/jmsj.85B.1http://dx.doi.org/10.2151/jmsj.85B.1]
Ma J J, Wu H, Wang C, Zhang X, Li Z Q and Wang X H. 2014. Multiyear satellite and surface observations of cloud fraction over China. Journal of Geophysical Research: Atmospheres, 119(12): 7655-7666 [DOI: 10.1002/2013JD021413http://dx.doi.org/10.1002/2013JD021413]
Nan S L, Zhao P, Yang S and Chen J M. 2009. Springtime tropospheric temperature over the Tibetan Plateau and evolutions of the tropical Pacific SST. Journal of Geophysical Research: Atmospheres, 114(D10): D10104 [DOI: 10.1029/2008JD011559http://dx.doi.org/10.1029/2008JD011559]
Naud C M, Rangwala I, Xu M and Miller J R. 2015. A satellite view of the radiative impact of clouds on surface downward fluxes in the Tibetan Plateau. Journal of Applied Meteorology and Climatology, 54(2): 479-493 [DOI: 10.1175/JAMC-D-14-0183.1http://dx.doi.org/10.1175/JAMC-D-14-0183.1]
Platnick S, Meyer K G, King M D, Wind G, Amarasinghe N, Marchant B, Arnold G T, Zhang Z B, Hubanks P A, Holz R E, Yang P, Ridgway W L and Riedi J. 2017. The MODIS cloud optical and microphysical products: collection 6 updates and examples from terra and aqua. IEEE Transactions on Geoscience and Remote Sensing, 55(1): 502-525 [DOI: 10.1109/TGRS.2016.2610522http://dx.doi.org/10.1109/TGRS.2016.2610522]
Stubenrauch C J, Rossow W B, Kinne S, Ackerman S, Cesana G, Chepfer H, Di Girolamo L, Getzewich B, Guignard A, Heidinger A, Maddux B C, Menzel W P, Minnis P, Pearl C, Platnick S, Poulsen C, Riedi J, Sun-Mack S, Walther A, Winker D, Zeng S and Zhao G. 2013. Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel. Bulletin of the American Meteorological Society, 94(7): 1031-1049 [DOI: 10.1175/BAMS-D-12-00117.1http://dx.doi.org/10.1175/BAMS-D-12-00117.1]
Tang X P, Zhang H Z, Lu H Y and Ma P F. 2009. Characteristics of total cloud amount over Tibet in 1971-2008. Advances in Climate Change Research, 5(6): 343-347
唐小萍, 张核真, 路红亚, 马鹏飞. 2009. 西藏地区1971—2008年台站观测总云量的变化特征. 气候变化研究进展, 5(6): 343-347 [DOI: 10.3969/j.issn.1673-1719.2009.06.005http://dx.doi.org/10.3969/j.issn.1673-1719.2009.06.005]
Wang M Y and Wang B M. 2009. Total cloud amount difference between ISCCP product and ground observation over China. Journal of Applied Meteorological Science, 20(4): 411-418
王旻燕, 王伯民. 2009. ISCCP产品和我国地面观测总云量差异. 应用气象学报, 20(4): 411-418 [DOI: 10.3969/j.issn.1001-7313.2009.04.004http://dx.doi.org/10.3969/j.issn.1001-7313.2009.04.004]
Wei L and Zhong Q. 1997. Characteristics of cloud climatology over Qinghai-Xizang Plateau. Plateau Meteorology, 16(1): 10-16
魏丽, 钟强. 1997. 青藏高原云的气候学特征. 高原气象, 16(1): 10-16
Wu G X, Liu Y M, Zhang Q, Duan A M, Wang T M, Wan R J, Liu X, Li W P, Wang Z Z and Liang X Y. 2007. The Influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8(4): 770-789 [DOI: 10.1175/JHM609.1http://dx.doi.org/10.1175/JHM609.1]
Wu G X and Zhang Y S. 1998. Tibetan plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Monthly Weather Review, 126(4): 913-927 [DOI: 10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2http://dx.doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2]
Xu X D, Lu C G, Shi X H andGao S T. 2008. World water tower: an atmospheric perspective. Geophysical Research Letters, 35(20): L20815 [DOI: 10.1029/2008GL035867http://dx.doi.org/10.1029/2008GL035867]
Yu R C, Wang B and Zhou T J. 2004. Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. Journal of Climate, 17(13): 2702-2713 [DOI: 10.1175/1520-0442(2004)017<2702:CEOTDC>2.0.CO;2http://dx.doi.org/10.1175/1520-0442(2004)017<2702:CEOTDC>2.0.CO;2]
Zhao P and Chen L X. 2001a. Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Science in China Series D: Earth Sciences, 44(9): 858-864 [DOI: 10.1007/BF02907098http://dx.doi.org/10.1007/BF02907098]
Zhao P and Chen L X. 2001b. Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation. Advances in Atmospheric Sciences, 18(1): 106-116 [DOI: 10.1007/s00376-001-0007-3http://dx.doi.org/10.1007/s00376-001-0007-3]
Zhao P, Zhang X D, Li Y F and Chen J M. 2009. Remotely modulated tropical–North Pacific ocean–atmosphere interactions by the South Asian high. Atmospheric Research, 94(1): 45-60 [DOI: 10.1016/j.atmosres.2009.01.018http://dx.doi.org/10.1016/j.atmosres.2009.01.018]
Zhao P, Zhou Z J and Liu J P. 2007. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: an observational investigation. Journal of Climate, 20(15): 3942-3955 [DOI: 10.1175/JCLI4205.1http://dx.doi.org/10.1175/JCLI4205.1]
Zhou X J, Zhao P, Chen J M, Chen L X and Li W L. 2009. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Science in China Series D: Earth Sciences, 52(11): 1679-1693 [DOI: 10.1007/s11430-009-0194-9http://dx.doi.org/10.1007/s11430-009-0194-9]
相关作者
相关机构