高光谱图像相对含水量反演引导的精细分类
Relative water content retrieval and refined classification of hyperspectral images based on a symbiotic neural network
- 2021年25卷第11期 页码:2283-2302
纸质出版日期: 2021-11-07
DOI: 10.11834/jrs.20219359
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-11-07 ,
扫 描 看 全 文
梁雪剑,张晔,张钧萍.2021.高光谱图像相对含水量反演引导的精细分类.遥感学报,25(11): 2283-2302
Liang X J, Zhang Y and Zhang J P. 2021. Relative water content retrieval and refined classification of hyperspectral images based on a symbiotic neural network. National Remote Sensing Bulletin, 25(11):2283-2302
深度学习在高光谱图像处理领域的研究应用不断深入发展,基于深度学习的高光谱图像分类达到了较高的分类精度。目前的分类模型多利用高光谱的图谱特征,但对光谱的诊断性特征及先验信息利用不足,对空谱特征提取过程难以实现有效协同,因而导致分类类别即类内分类不够精细。为了解决以上问题,本文提出一种以多标签数据为输入的共生神经网络模型,在高光谱图谱特征提取的基础上融合光谱诊断特征,实现相对含水量反演及精细分类。首先,通过构建一种新的红边斜率光谱指数实现高光谱图像相对含水量的表征,利用本文提出的自适应分级算法完成相对含水量反演并建立对应的等级标签,与地物种类标签共同构成多标签高光谱数据集。然后,构建共生神经网络架构及内部变维特征提取模块,利用多标签数据提取高光谱图像中空间、光谱和相对含水量的融合特征,提高深度模型对不同含水量地物的区分能力和对所提取特征的协同表达能力,降低模型的复杂度与计算量,完成基于多标签数据集的相对含水量反演引导分类的过程,在扩大传统类间距离的基础上进一步扩大类内距离,从而实现高光谱图像的精细分类。最后,使用实验室采集数据和4个公开的高光谱数据集Lopex、Indian Pines、Pavia University和Salinas进行实验验证。结果表明,本文提出的红边斜率光谱指数可以有效表征地物的相对含水量信息;相对含水量反演引导的分类模型对类内分类精度有较明显的提升,对总体分类结果有一定的改善;与其他机器学习和深度学习分类算法相比,本文算法取得了较好的分类结果,提高了深度分类模型的分类性能和精细程度,实现了精细分类。
The application of deep learning methods in the hyperspectral research field has been developed continuously
and hyperspectral image classification models based on deep learning methods achieve high classification accuracy compared with others. Current classification models mostly use hyperspectral graphic-spectral features but lack diagnostic features and prior information
which makes it difficult to extract spectral-spatial features collaboratively and implement refined classification further. The results are not refined for intraclass classification. To solve the abovementioned issues
we proposed a Symbiotic Neural Network (SNN) for hyperspectral refined classification
which regards a multilabeled data set as input. SNN can fuse spectrum diagnostic features with graphic-spectral features to retrieve relative water content and implement refined classification simultaneously. First
we proposed a new spectral index
Red Edge Sloped (RES)
to characterize the relative water content and used RES to label the relative water content on all the objects in data sets via an adaptive grading algorithm. We then built a multilabeled data set with original object labels. Second
we established the SNN architecture and dimensionality-varied feature extraction module to extract fusion information of space
spectra
and relative water content in hyperspectral data
which was able to improve the cooperative expression capability for features and the discrimination capability for the water content of various ground objects. It was also able to reduce the structural complexity and amount of computation of the deep model. Moreover
the dimensionality-varied module was able to extract more accurate and abstract features at a high level and improved the extensibility to build a deeper network. After the aforementioned progress
we implemented hyperspectral image refined classification with the guide of relative water content retrieval by using the SNN and completed interclass and intraclass classification simultaneously. On the basis of the relative water content retrieval in the classification
the interclass and intraclass distances can be further expanded over traditional classification methods. Experiments were conducted using one hyperspectral data set collected in the laboratory and four open hyperspectral data sets
namely
Lopex
Indian Pines
Pavia University
and Salinas
to validate the effectiveness of RES and the superiority of the SNN model. The experimental results demonstrated that the RES index proposed in this paper was able to represent the relative water content of objects in data effectively. The classification accuracy and discrimination capability for the water content of SNN were improved evidently with the guide of relative water content retrieval. In addition
we compared SNN with other state-of-the-art methods
and SNN obtained higher classification accuracy. Therefore
the SNN model proposed in this paper
which implements refined classification with the guide of relative water content retrieval
can enhance the feature extraction capability of the model for hyperspectral image classification and improve the classification performance effectively.
高光谱遥感精细分类深度学习共生神经网络相对含水量反演变维特征提取
hyperspectral remote sensingimage classificationdeep learningsymbiotic neural networkrelative water content retrievaldimensionality-varied feature extraction
Alipourfard T, Arefi H and Mahmoudi S. 2018. A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification//IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE: 4780-4783 [DOI: 10.1109/IGARSS.2018.8518956http://dx.doi.org/10.1109/IGARSS.2018.8518956]
Chan T H, Jia K, Gao S H, Lu J W, Zeng Z N and Ma Y. 2015. PCANet: a simple deep learning baseline for image classification?. IEEE Transactions on Image Processing, 24(12): 5017-5032 [DOI: 10.1109/TIP.2015.2475625http://dx.doi.org/10.1109/TIP.2015.2475625]
Chen Y S, Lin Z H, Zhao X, Wang G and Gu Y F. 2014. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2094-2107 [DOI: 10.1109/JSTARS.2014.2329330http://dx.doi.org/10.1109/JSTARS.2014.2329330]
Chen Y S, Zhao X and Jia X P. 2015. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 2381-2392 [DOI: 10.1109/JSTARS.2015.2388577http://dx.doi.org/10.1109/JSTARS.2015.2388577]
Chen Z X, Ren J Q, Tang H J, Shi Y, Leng P, Liu J, Wang L M, Wu W B, Yao Y M and Hasiyuya. 2016. Progress and perspectives on agricultural remote sensing research and applications in China. Journal of Remote Sensing, 20(5): 748-767
陈仲新, 任建强, 唐华俊, 史云, 冷佩, 刘佳, 王利民, 吴文斌, 姚艳敏, 哈斯图亚. 2016. 农业遥感研究应用进展与展望. 遥感学报, 20(5): 748-767 [DOI: 10.11834/jrs.20166214http://dx.doi.org/10.11834/jrs.20166214]
Du P J, Xia J S, Xue Z H, Tan K, Su H J and Bao R. 2016. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 20(2): 236-256
杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊. 2016. 高光谱遥感影像分类研究进展. 遥感学报, 20(2): 236-256 [DOI: 10.11834/jrs.20165022http://dx.doi.org/10.11834/jrs.20165022]
Dutta D, Das P K, Alam K A, Safwan P, Paul S, Nanda M K and Dadhwal V K. 2016. Delta area at near infrared region (DANIR)—a novel approach for green vegetation fraction estimation using field hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9): 3970-3981 [DOI: 10.1109/JSTARS.2016.2539359http://dx.doi.org/10.1109/JSTARS.2016.2539359]
Gevaert C M, Tang J, García-Haro F J, Suomalainen J and Kooistra L. 2014. Combining hyperspectral UAV and multispectral Formosat-2 imagery for precision agriculture applications//6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Lausanne: IEEE: 2014: 1-4 [DOI: 10.1109/WHISPERS.2014.8077607http://dx.doi.org/10.1109/WHISPERS.2014.8077607]
Ghamisi P, Chen Y S and Zhu X X. 2016. A self-improving convolution neural network for the classification of hyperspectral data. IEEE Geoscience and Remote Sensing Letters, 13(10): 1537-1541 [DOI: 10.1109/LGRS.2016.2595108http://dx.doi.org/10.1109/LGRS.2016.2595108]
Hu W, Huang Y Y, Wei L, Zhang F and Li H C. 2015. Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015: 258619 [DOI: 10.1155/2015/258619http://dx.doi.org/10.1155/2015/258619]
Jia P Y, Zhang M, Yu W B, Shen F and Shen Y. 2016. Convolutional neural network based classification for hyperspectral data//Geoscience and Remote Sensing Symposium. Beijing: IEEE: 5075-5078 [DOI: 10.1109/IGARSS.2016.7730323http://dx.doi.org/10.1109/IGARSS.2016.7730323]
Li T, Zhang J P and Zhang Y. 2014. Classification of hyperspectral image based on deep belief networks//IEEE International Conference on Image Processing (ICIP) 2014. Paris: IEEE: 5132-5136 [DOI: 10.1109/ICIP.2014.7026039http://dx.doi.org/10.1109/ICIP.2014.7026039]
Li Y, Zhang H K and Shen Q. 2017. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sensing, 9(1): 67 [DOI: 10.3390/rs9010067http://dx.doi.org/10.3390/rs9010067]
Liu B, Wu C and Lin Y. 2016. Feature weighted-mixed kernel SVM for remote sensing wetland classification. Engineering of Surveying and Mapping, 25(7): 13-17
刘冰, 吴超, 林怡. 2016. 混合核特征加权SVM遥感湿地空间分类. 测绘工程, 25(7): 13-17 [DOI: 10.19349/j.cnki.issn1006-7949.2016.07.003http://dx.doi.org/10.19349/j.cnki.issn1006-7949.2016.07.003]
Makantasis K, Karantzalos K, Doulamis A and Doulamis N. 2015. Deep supervised learning for hyperspectral data classification through convolutional neural networks//IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan: IEEE: 4959-4962 [DOI: 10.1109/IGARSS.2015.7326945http://dx.doi.org/10.1109/IGARSS.2015.7326945]
Pan B, Shi Z W, Zhang N and Xie S B. 2016. Hyperspectral image classification based on nonlinear spectral–spatial network. IEEE Geoscience and Remote Sensing Letters, 13(12): 1782-1786 [DOI: 10.1109/LGRS.2016.2608963http://dx.doi.org/10.1109/LGRS.2016.2608963]
Paoletti M E, Haut J M, Fernandez-Beltran R, Plaza J, Plaza A, Li J and Pla F. 2019a. Capsule networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 57(4): 2145-2160 [DOI: 10.1109/TGRS.2018.2871782http://dx.doi.org/10.1109/TGRS.2018.2871782]
Paoletti M E, Haut J M, Fernandez-Beltran R, Plaza J, Pla za A J and Pla F. 2019b. Deep pyramidal residual networks for spectral-spatial hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 740-754 [DOI: 10.1109/TGRS.2018.2860125http://dx.doi.org/10.1109/TGRS.2018.2860125]
Ren G B, Zhang J, Ma Y and Zheng R E. 2010. Generative model based semi-supervised learning method of remote sensing image classification. Journal of Remote Sensing, 14(6): 1097-1114
任广波, 张杰, 马毅, 郑荣儿. 2010. 生成模型学习的遥感影像半监督分类. 遥感学报, 14(6): 1097-1114 [DOI: 10.11834/jrs.20100603http://dx.doi.org/10.11834/jrs.20100603]
Rojo-Álvarez J L, Martínez-Ramón M, Muñoz-Marí J and Camps-Valls G. 2018. Support vector machine and kernel classification algorithms//Rojo-Álvarez J L, Martínez-Ramón M, Muñoz-Marí J and Camps-Valls G, eds. Digital Signal Processing with Kernel Methods. Hoboken: John Wiley and Sons Ltd.: 433-502 [DOI: 10.1002/9781118705810.ch10http://dx.doi.org/10.1002/9781118705810.ch10]
Tong G F, Li Y, Cao L H and Chen J. 2017. A DBN for hyperspectral remote sensing image classification//12th IEEE Conference on Industrial Electronics and Applications. Siem Reap: IEEE: 1757-1762 [DOI: 10.1109/ICIEA.2017.8283123http://dx.doi.org/10.1109/ICIEA.2017.8283123]
Wang S H, Lv Y D, Sui Y X, Liu S, Wang S J and Zhang Y D. 2018. Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. Journal of Medical Systems, 42(1): 2 [DOI: 10.1007/s10916-017-0845-xhttp://dx.doi.org/10.1007/s10916-017-0845-x]
Wu J F, Jiang Z G, Zhang H P, Cai B W and Luo P H. 2017. Hyperspectral remote sensing image classification based on semi-supervised conditional random field. Journal of Remote Sensing, 21(4): 588-603
吴俊峰, 姜志国, 张浩鹏, 蔡博文, 罗鹏浩. 2017. 半监督条件随机场的高光谱遥感图像分类. 遥感学报, 21(4): 588-603 [DOI: 10.11834/jrs.20176121http://dx.doi.org/10.11834/jrs.20176121]
Yao K, Guo X D, Nan Y, Li K, Jiang S F and Sun T T. 2016. Research progress of hyperspectral remote sensing monitoring of vegetation biomass assessment. Science of Surveying and Mapping, 41(8): 48-53
姚阔, 郭旭东, 南颖, 李坤, 江淑芳, 孙婷婷. 2016. 植被生物量高光谱遥感监测研究进展. 测绘科学, 41(8): 48-53 [DOI: 10.16251/j.cnki.1009-2307.2016.08.010http://dx.doi.org/10.16251/j.cnki.1009-2307.2016.08.010]
Zhang J P, Ma W J and Qi J G. 2012. Water quality model parameters inversion based on improved stochastic optimization//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE: 2032-2035 [DOI: 10.1109/IGARSS.2012.6350977http://dx.doi.org/10.1109/IGARSS.2012.6350977]
Zhao S H, Zhang F, Wang Q, Yao Y J, Wang Z T and You D A. 2013. Application of hyper-spectral remote sensing technology in environmental protection. Spectroscopy and Spectral Analysis, 33(12): 3343-3348
赵少华, 张峰, 王桥, 姚云军, 王中挺, 游代安. 2013. 高光谱遥感技术在国家环保领域中的应用. 光谱学与光谱分析, 33(12): 3343-3348) [DOI: 10.3964/j.issn.1000-0593(201312-3343-06]
Zhao W Z and Du S H. 2016. Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4544-4554 [DOI: 10.1109/TGRS.2016.2543748http://dx.doi.org/10.1109/TGRS.2016.2543748]
Zhong S W, Chang C I and Zhang Y. 2018. Iterative support vector machine for hyperspectral image classification//IEEE International Conference on Image Processing (ICIP). Athens: IEEE: 3309-3312 [DOI: 10.1109/ICIP.2018.8451145http://dx.doi.org/10.1109/ICIP.2018.8451145]
Zhou G Y, Lin B J and Ma X J. 2013. A spatial clustering algorithm for line objects based on extended Hausdorff distance//21st International Conference on Geoinformatics. Kaifeng: IEEE: 1-4 [DOI: 10.1109/Geoinformatics.2013.6626166http://dx.doi.org/10.1109/Geoinformatics.2013.6626166]
相关作者
相关机构