基于极端随机树的闪电河流域土壤水分反演
Soil moisture retrieval using extremely randomized trees over the Shandian river basin
- 2021年25卷第4期 页码:941-951
纸质出版日期: 2021-04-07
DOI: 10.11834/jrs.20219396
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-04-07 ,
扫 描 看 全 文
程渊,李玉霞,李凡,何磊.2021.基于极端随机树的闪电河流域土壤水分反演.遥感学报,25(4): 941-951
Cheng Y,Li Y X,Li F and He L. 2021. Soil moisture retrieval using extremely randomized trees over the Shandian river basin. National Remote Sensing Bulletin, 25(4):941-951
土壤水分在地表动植物生存、大气—地表间的能量和物质循环中承担着重要的角色,对水循环、气候变化、农业监测、生态环境、地质灾害等应用指标的大面积监测具有重要意义。但由于土壤类型、土壤结构条件、地形特征、植被环境以及人类活动等因素的影响,土壤含水量的分布存在空间异质性特点,对较大区域(例如流域尺度)的土壤水分分布进行监测仍然十分困难。本文以闪电河流域为例,利用中分辨率成像光谱仪(MODIS)反射率数据反演得到植被指数,并以相关植被指数VIs(Vegetation Indices)、地表温度LST(Land Surface Temperature)数据为输入参数,实测土壤水分数据为期望输出参数,发展了一种基于极端随机树的土壤水分反演方法。考虑到地表温度的不易测量性以及对区域土壤湿度监测的需求,本文使用短波红外转换反射率STR(Shortwave Infrared Transformed Reflectance)代替LST建立极端随机树模型,反演了覆盖闪电河流域的2° × 2°区域的土壤湿度图。实验结果表明:(1)输入参数使用LST时,基于极端随机树的土壤湿度反演模型表现较好,其均方根误差为0.054 m
3
m
-3
,相关系数为0.69,预测精度优于其他模型(支持向量机、随机森林);(2)输入参数使用STR时,预测结果的均方根误差为0.060 m
3
m
-3
,相关系数为0.66,使用STR代替LST进行大面积土壤湿度预测具有可行性,土壤水分的空间分布与实际情况基本一致,能够满足一般的应用需求。
Soil moisture plays an important role in the survival of animals and surface plants
the energy and material cycle between atmosphere and surface. Meanwhile
the large-scale monitoring of soil moisture is a critical indicator for water cycle
climate change
agricultural monitoring
ecological environment
geological disasters
fire and other applications. However
because of the influence of soil types
soil structure conditions
terrain characteristics
vegetation environment and human activities
the distribution of soil moisture has spatial heterogeneity characteristic
so it is still hard to find an optimal method to monitor the distribution of soil moisture in large areas (such as watershed scale). In the comprehensive experiments
the Shandian River Basin was selected as the experiment area. Vegetation Indices (VIs) retrieved from MODIS reflectance data and Land Surface Temperature (LST) were calculated as the input parameters
and then the soil moisture measured was taken as the expected output parameters. Further
the random forest model is used to calculate the feature importance of each input parameters to complete feature selection
and a soil moisture inversion model based on extreme random tree was constructed. Compared with empirical models
the soil moisture retrieval model based on extreme random tree has stronger nonlinear expression ability
and can introduce more input parameters; compared with traditional machine learning methods such as Support Vector Machine(SVM) and Neural Network(NN)
extreme random tree can achieve better retrieval accuracy on small sample set by integrating several “weak learners” into “strong learners”; Compared with random forest
extreme random tree can reduce the variance and the deviation of the model to achieve better integration effects. Considering the difficulty of surface temperature measurements and the requirements of regional soil moisture monitoring
the research selected Short wave infrared Transformed Reflectance (STR) instead of LST to establish the extreme random tree model
and inversed the soil moisture map of 2°× 2° area covering experiment area of Shandian River Basin. The results show that: (1) when LST is used as the input parameter
the soil moisture retrieval model based on extreme random tree
(root mean square error 0.054 m
3
m
-3
and correlation coefficient 0.69)
has better performance than other models (support vector machine and random forest); (2) when STR is used as the input parameter
the root mean square error of prediction result is 0.060 m
3
m
-3
and the correlation coefficient is 0.66. So it is feasible to introduce STR instead of LST to predict soil moisture in large area. Further
the spatial distribution of soil moisture is basically consistent with the actual situation
which can meet the requirements of general application. Focused on the limitation of MODIS data quality and the scale difference between single point measurement data and satellite data
the accuracy of soil moisture estimation still need to be improved. At the same time
due to the lack of long-term measured data of soil moisture
the spatiotemporal scalability of soil moisture inversion model needs to be further verified. Optical remote sensing is greatly affected by the weather
while microwave remote sensing can be the alternative choices for all-weather observation. The multi-source remote sensing data fusion should be attribute more attention to soil moisture retrieval model construction.
土壤含水量闪电河流域极端随机树MODIS短波红外转换反射率(STR)
soil moisturethe Shandian riverextreme random treesMODISSTR
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32 [DOI: 10.1023/A:1010933404324http://dx.doi.org/10.1023/A:1010933404324]
Ceccato P, Gobron N, Flasse S, Pinty B and Tarantola S. 2002. Designing a spectral index to estimate vegetation water content from remote sensing data: part 1: theoretical approach. Remote Sensing of Environment, 82(2/3): 188-197 [DOI: 10.1016/s0034-4257(02)00037-8http://dx.doi.org/10.1016/s0034-4257(02)00037-8]
Entekhabi D, Yueh S, O’Neill P E, Kellogg K H, Allen A, Bindlish R, Brown M, Chan S, Colliander A, Crow W T, Das N, De Lannoy G, Dunbar R S, Edelstein W N, Entin J K, Escobar V, Goodman S D, Jackson T J, Jai B, Johnson J, Kim E, Kim S, Kimball J, Koster R D, Leon A, McDonald K C, Moghaddam M, Mohammed P, Moran S, Njoku E G, Piepmeier J R, Reichle R, Rogez F, Shi J C, Spencer M W, Thurman S W, Tsang L, Van Zyl J, Weiss B and West R. 2014. SMAP Handbook–Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space. Pasadena: JPL Publication
Gao B C. 1995. Normalized difference water index for remote sensing of vegetation liquid water from space//Proceedings of SPIE 2480, Imaging Spectrometry. Orlando: SPIE [DOI: 10.1117/12.210877http://dx.doi.org/10.1117/12.210877]
Geurts P, Ernst D and Wehenkel L. 2006. Extremely randomized trees. Machine Learning, 63(1): 3-42 [DOI: 10.1007/s10994-006-6226-1http://dx.doi.org/10.1007/s10994-006-6226-1]
Gill M K, Asefa T, Kemblowski M W and McKee M. 2006. Soil moisture prediction using support vector machines. Journal of the American Water Resources Association, 42(4): 1033-1046 [DOI: 10.1111/j.1752-1688.2006.tb04512.xhttp://dx.doi.org/10.1111/j.1752-1688.2006.tb04512.x]
Hardisky M A, Klemas V and Smart R M. 1983. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of spartina alterniflora, canopies. Photogrammetric Engineering and Remote Sensing, 49(1): 77-83
Hassan-Esfahani L, Torres-Rua A, Jensen A and McKee M. 2015. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sensing, 7(3): 2627-2646 [DOI: 10.3390/rs70302627http://dx.doi.org/10.3390/rs70302627]
Huete A R, Liu H Q, Batchily K and van Leeuwen W. 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3): 440-451 [DOI: 10.1016/S0034-4257(96)00112-5http://dx.doi.org/10.1016/S0034-4257(96)00112-5]
Hunt Jr E R and Rock B N. 1989. Detection of changes in leaf water content using Near-and Middle-Infrared reflectances. Remote Sensing of Environment, 30(1): 43-54 [DOI: 10.1016/0034-4257(89)90046-1http://dx.doi.org/10.1016/0034-4257(89)90046-1]
Kerr Y H, Waldteufel P, Wigneron J P, Delwart S, Cabot F, Boutin J, Escorihuela M J, Font J, Reul N, Gruhier C, Juglea S E, Drinkwater M R, Hahne A, Martín-Neira M and Mecklenburg S. 2010. The SMOS mission: new tool for monitoring key elements of the global water cycle. Proceedings of the IEEE, 98(5): 666-687 [DOI: 10.1109/JPROC.2010.2043032http://dx.doi.org/10.1109/JPROC.2010.2043032]
Khanna S, Palacios-Orueta A, Whiting M L, Ustin S L, Riaño D and Litago J. 2007. Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sensing of Environment, 109(2): 154-165 [DOI: 10.1016/j.rse.2006.12.018http://dx.doi.org/10.1016/j.rse.2006.12.018]
Kolassa J, Reichle R H, Liu Q, Alemohammad S H, Gentine P, Aida K, Asanuma J, Bircher S, Caldwell T, Colliander A, Cosh M, Holifield C, Jackson T J, Martínez-Fernández J, McNairn H, Pacheco A, Thibeault M and Walker J P. 2018. Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote Sensing of Environment, 204: 43-59 [DOI: 10.1016/j.rse.2017.10.045http://dx.doi.org/10.1016/j.rse.2017.10.045]
Krogh A and Vedelsby J. 1995. Neural network ensembles, cross validation and active learning//Proceedings of the 7th International Conference on Neural Information Processing Systems. Denver: MIT Press
Lewińska K E, Ivits E, Schardt M, et al. Alpine forest drought monitoring in south Tyrol: PCA based synergy between scPDSI data and MODIS derived NDVI and NDII7 time series. Remote Sensing,2016, 8(8): 639 [DOI:10.3390/rs8080639http://dx.doi.org/10.3390/rs8080639]
Li H. 2012. Statistical Learning Method. Beijing: Tsinghua University Press
李航. 2012. 统计学习方法. 北京: 清华大学出版社
Lievens H, Martens B, Verhoest N E C, Hahn S, Reichle R H and Miralles D G. 2017. Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates. Remote Sensing of Environment, 189: 194-210 [DOI: 10.1016/j.rse.2016.11.022http://dx.doi.org/10.1016/j.rse.2016.11.022]
Lu Y L, Horton R, Zhang X and Ren T S. 2018. Accounting for soil porosity improves a thermal inertia model for estimating surface soil water content. Remote Sensing of Environment, 212: 79-89 [DOI: 10.1016/j.rse.2018.04.045http://dx.doi.org/10.1016/j.rse.2018.04.045]
Qi J, Chehbouni A, Huete A R, Kerr Y H and Sorooshian S. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2): 119-126 [DOI: 10.1016/0034-4257(94)90134-1http://dx.doi.org/10.1016/0034-4257(94)90134-1]
Qin Q M, Jin C, Zhang N and Yang X B. 2010. An two-dimensional spectral space based model for Drought monitoring and its re-examination//Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu: IEEE: 3869-3872 [DOI: 10.1109/IGARSS.2010.5649710http://dx.doi.org/10.1109/IGARSS.2010.5649710]
Sadeghi M, Babaeian E, Tuller M and Jones S B. 2017. The optical trapezoid model: a novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sensing of Environment, 198: 52-68 [DOI: 10.1016/j.rse.2017.05.041http://dx.doi.org/10.1016/j.rse.2017.05.041]
Sadeghi M, Jones S B and Philpot W D. 2015. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sensing of Environment, 164: 66-76 [DOI: 10.1016/j.rse.2015.04.007http://dx.doi.org/10.1016/j.rse.2015.04.007]
Tucker C J. 1980. Remote sensing of leaf water content in the near infrared. Remote Sensing of Environment, 10(1): 23-32 [DOI: 10.1016/0034-4257(80)90096-6http://dx.doi.org/10.1016/0034-4257(80)90096-6]
Van Deventer A P, Ward A D, Gowda P H, et al. Using thematic mapper data to identify contrasting soil plains and tillage practices[J].Photogrammetric Engineering and Remote Sensing, 1997, 63: 87-93
Wang L L and Qu J J. 2007. NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34(20): L20405 [DOI: 10.1029/2007GL031021http://dx.doi.org/10.1029/2007GL031021]
Yan G J, Zhao T J, Mu X H, Wen J G, Pang Y, Jia L, Zhang Y G, Chen D Q, Yao C B, Cao Z Y, Lei Y H, Ji D B, Chen L F, Liu Q H, Lyu L Q, Chen J M and Shi J C. 2021. Comprehensive Remote Sensing Experiment of Carbon Cycle, Water Cycle and Energy Balance in Luan River Basin. National Remote Sensing Bulletin, 25(4): 856-870
阎广建, 赵天杰, 穆西晗, 闻建光, 庞勇, 贾立, 张永光, 陈德清, 姚崇斌, 曹志宇, 雷永荟, 姬大彬, 陈良富, 柳钦火, 吕利清, 陈镜明, 施建成. 2021. 滦河流域碳、水循环和能量平衡遥感综合试验总体设计. 遥感学报, 25(4): 856-870) [DOI: 10.11834/jrs.20210341http://dx.doi.org/10.11834/jrs.20210341]
Yao S H, Zhu Z Y, Zhang S W, Zhang S L and Li Y. 2013. Using SWAT model to simulate the discharge of the river Shandianhe in Inner. Journal of Arid Land Resources and Environment, 27(1): 175-180
姚苏红, 朱仲元, 张圣微, 张苏鲁, 李杨. 2013. 基于SWAT模型的内蒙古闪电河流域径流模拟研究. 干旱区资源与环境, 27(1): 175-180 [DOI: 10.13448/j.cnki.jalre.2013.01.035http://dx.doi.org/10.13448/j.cnki.jalre.2013.01.035]
Yao Y J, Qin Q M, Zhao S H and Yuan W L. 2011. Retrieval of soil moisture based on MODIS shortwave infrared spectral feature. Journal of Infrared and Millimeter Waves, 30(1): 9-14, 79
姚云军, 秦其明, 赵少华, 袁蔚林. 2011. 基于MODIS短波红外光谱特征的土壤含水量反演. 红外与毫米波学报, 30(1): 9-14, 79 [DOI: 10.3724/SP.J.1010.2011.00009http://dx.doi.org/10.3724/SP.J.1010.2011.00009]
Zhang N, Hong Y, Qin Q M andLiu L. 2013. VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. International Journal of Remote Sensing, 34(13): 4585-4609 [DOI: 10.1080/01431161.2013.779046http://dx.doi.org/10.1080/01431161.2013.779046]
Zhao T J, Shi J C, Lv L Q, Xu H X, Chen D Q, Cui Q, Jackson T J, Yan G J, Jia L, Chen L F, Zhao K, Zheng X M, Zhao L M, Zheng C L, Ji D B, Xiong C, Wang T X, Li R, Pan J M, Wen j G, Yu C, Zheng Y M, Jiang L M, Chai L N, Lu H, Yao P P, Ma J W, Lv H S, Wu J J, Zhao W, Yang N, Guo P, Li Y X, Hu L, Geng D Y and Zhang Z Q. 2020. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sensing of Environment, 240: 111680 [DOI: 10.1016/j.rse.2020.111680http://dx.doi.org/10.1016/j.rse.2020.111680]
Zhao T J, Shi J C, Xu H X, Sun Y L, Chen D Q, Cui Q, Jia L, Huang S, Niu S D, Li X W, Yan G J, Chen L F, Liu Q H, Zhao K, Zheng X M, Zhao L M, Zheng C L, Ji D B, Xiong C, Wang T X, Li R, Pan J M, Wen J G, Mu X H, Yu C, Zheng Y M, Jiang L M, Chai L N, Lu H, Yao P P, Ma J W, Lv H S, Wu J J, Zhao W, Yang N, Guo P, Li Y X, Hu L, Geng D Y, Zhang Z Q, Hu J F and Du A P. 2021. Comprehensive remote sensing experiment of water cycle and energy balance in the Shandian river basin. National Remote Sensing Bulletin, 25(4): 871-887
赵天杰, 施建成, 徐红新, 孙彦龙, 陈德清, 崔倩, 贾立, 黄硕, 牛升达, 李秀伟, 阎广建, 陈良富, 柳钦火, 赵凯, 郑兴明, 赵利民, 郑超磊, 姬大彬, 熊川, 王天星, 李睿, 潘金梅, 闻建光, 穆西晗, 余超, 郑姚闽, 蒋玲梅, 柴琳娜, 卢麾, 姚盼盼, 马建威, 吕海深, 武建军, 赵伟, 杨娜, 郭鹏, 李玉霞, 胡路, 耿德源, 张子谦, 胡建峰, 杜爱萍. 2021. 闪电河流域水循环和能量平衡遥感综合试验. 遥感学报, 25(4): 871-887 [DOI:10.11834/jrs.20219401http://dx.doi.org/10.11834/jrs.20219401]
Zhao T J. 2018. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects. Progress in Geography, 37(2): 198-213
赵天杰. 2018. 被动微波反演土壤水分的L波段新发展及未来展望. 地理科学进展, 37(2): 198-213 [DOI: 10.18306/dlkxjz.2018.02.003http://dx.doi.org/10.18306/dlkxjz.2018.02.003]
Zhao T J, Zhang L X, Jiang L M, Chen Q, Zhang Z Y and Zhang Y P. 2009. Joint inversion of soil moisture using active and passive microwave data. Advances in Earth Science, 24(7): 769-775
赵天杰, 张立新, 蒋玲梅, 陈权, 张志玉, 张勇攀. 2009. 利用主被动微波数据联合反演土壤水分. 地球科学进展, 24(7): 769-775 [DOI: 10.3321/j.issn:1001-8166.2009.07.010http://dx.doi.org/10.3321/j.issn:1001-8166.2009.07.010]
相关作者
相关机构