体散射函数测量技术定标方法研究进展
Research progress in the calibration method of the volume scattering function measurement technique
- 2023年27卷第2期 页码:285-298
纸质出版日期: 2023-02-07
DOI: 10.11834/jrs.20221491
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-02-07 ,
扫 描 看 全 文
刘聪,李彩.2023.体散射函数测量技术定标方法研究进展.遥感学报,27(2): 285-298
Liu C and Li C. 2023. Research progress in the calibration method of the volume scattering function measurement technique. National Remote Sensing Bulletin, 27(2):285-298
体散射函数描述了光被水体散射后的角度分布特性,是海水固有光学特性之一,在水色遥感、生物光学特性及海气交互过程研究等光学海洋学研究及应用领域具有十分重要的意义。基于其强方向性、大动态范围、后向散射微弱等特点,体散射函数测量技术定标方法及应用研究至今仍在不断探索进步中。伴随体散射函数测量技术的发展,相继出现了基于散射体及散射通量的定标方法、基于漫射体与传感器响应权重函数的定标方法以及基于标准物质与传感器响应权重函数的定标方法等3大类体散射函数定标方法。相较于基于散射体及散射通量的定标方法,基于漫射体与传感器响应权重函数的定标方法可有效解决散射体估算难度大等问题,但更适用于宽视场角的后向散射仪;基于标准物质与传感器响应权重函数的定标方法极大简化了定标过程,且不受散射角度范围的限制。可以预见,上述3大类体散射函数定标方法的变通和组合方案是未来很长一段时间的主要定标方法,而基于标准物质与传感器响应权重函数的定标方法将是未来体散射函数最有优势的定标方法。本文以水体体散射函数定标方法为主线,归纳总结了国内外水体体散射函数定标、测量以及应用研究进展,并对未来体散射函数定标方法的发展趋势进行展望。
The Volume Scattering Function (VSF) is an important Inherent Optical Property (IOP) of seawater
which is a critical and fundamental parameter to describe the angular distribution of the scattering of incident light by water. In particular
the VSF has a significant importance in the field of ocean color remote sensing
atmosphere-sea interaction
eco-disaster alerting. Due to a strong directional distribution characterized by a large dynamic range in signal in the whole scatter directions and faint backscattering signal
the VSF measurement and calibration are complex and the research is still in the process of exploration and progress. In this paper
the research progress of calibration method and measurement technology of VSF has been summarized
and the development tendency of the VSF calibration method has been predicted.
Since the birth of the first backscattering in situ measurement instrument in the 1930s
the calibration methods of the VSF measurement improved gradually with the development of measurement techniques. There are three main methods for calibrating the VSF measurement: the first is based on the estimation of the scattering volume and the scattering flux
the second is based on a diffusing target throughout the sample volume to obtain the sensor response weighting function
and the third is based on the Mie theory and the standard solution or particles to obtain the sensor response weighting function. For the first calibration method
the scattering volume is generally calculated based on the optical and mechanical structures with the plausible assumptions
and the scattering flux can be obtained by the response of each scattering sensor to a Lambertian target as a function of distance
this method is limited in the range of angles due to the large error in the estimation of scattering volume of the forward small angle and the backward near 180°. For the second one
the core of this method is the obtaining of the detector’s weighting function
and it is not modeled by the structure parameters of the instrument
but accurately measured through the moving a diffusing target throughout the sample volume
this method can effectively solve the problems of difficult and inaccurate scatterer estimation
and it is more suitable for large backscattering with wide Field Of View (FOV). In addition
for the last one
based on standard materials with known physical features and Mie scattering or Rayleigh scattering
the scattering properties of standard materials can be calculated theoretically. The detector’s weighting function or calibration coefficient is obtained by matching the measured original signals with the theoretical value. Using this method
the calibration process of the VSF measurement has been significantly simplified
and no longer constrained to the scattering angle range. It is clear that the precision of this method is positively related to the degree of perfection of the theoretical model and the parametric information of the standard substance.
With the gradual improvement in the understanding of the IOPs of water
and the increasing demand for in situ measurements
the VSF measurement technology and the calibrating precision are also constantly innovated and optimized. It can be anticipated that all above three main types of the VSF calibration methods or a variant combination of them will continue for a long period of time
while the calibration method based on standard matter and sensor response weighting function will play an important role in the future.
体散射函数定标方法Mie散射权重函数固有光学特性水色遥感
Volume Scattering Function (VSF)calibration techniquesMie scatteringweighting functionInherent Optical Property (IOP)ocean color remote sensing
Babin M, Stramski D, Reynolds R A, Wright V M and Leymarie E. 2012. Determination of the volume scattering function of aqueous particle suspensions with a laboratory multi-angle light scattering instrument. Applied Optics, 51(17): 3853-3873 [DOI: 10.1364/ao.51.003853http://dx.doi.org/10.1364/ao.51.003853]
Balch W M, Drapeau D T, Cucci T L, Vaillancourt R D, Kilpatrick K A and Fritz J J. 1999. Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions. Journal of Geophysical Research: Oceans, 104(C1): 1541-1558 [DOI: 10.1029/1998jc900035http://dx.doi.org/10.1029/1998jc900035]
Bohren C F and Huffman D R. 1983. Absorption and Scattering of Light by Small Particles. New York: John Wiley and Sons
Brice B A, Halwer M and Speiser R. 1950. Photoelectric light-scattering photometer for determining high molecular weights. Journal of the Optical Society of America, 40(11): 768-778 [DOI: 10.1364/josa.40.000768http://dx.doi.org/10.1364/josa.40.000768]
Chami M, Marken E, Stamnes J J, Khomenko G and Korotaev G. 2006a. Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles. Journal of Geophysical Research: Oceans, 111(C5): C05013 [DOI: 10.1029/2005jc003230http://dx.doi.org/10.1029/2005jc003230]
Chami M, McKee D, Leymarie E and Khomenko G. 2006b. Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance. Applied Optics, 45(36): 9210-9220 [DOI: 10.1364/ao.45.009210http://dx.doi.org/10.1364/ao.45.009210]
Chami M, Shybanov E B, Churilova T Y, Khomenko G A, Lee M E G, Martynov O V, Berseneva G A and Korotaev G K. 2005. Optical properties of the particles in the Crimea coastal waters (Black Sea). Journal of Geophysical Research: Oceans, 110(C11): C11020 [DOI: 10.1029/2005jc003008http://dx.doi.org/10.1029/2005jc003008]
Chami M, Thirouard A and Harmel T. 2014. POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols. Optics Express, 22(21): 26403-26428 [DOI: 10.1364/oe.22.026403http://dx.doi.org/10.1364/oe.22.026403]
Chen D, Liu B Y, Yang Q, Tang J W and Wu S H. 2021. Measurement of volume scattering function of suspended particles in water approaching to 180°. Infrared and Laser Engineering, 50(6): 20211029
陈都, 刘秉义, 杨倩, 唐军武, 吴松华. 2021. 近180°水中悬浮颗粒物体积散射函数测量. 红外与激光工程, 50(6): 20211029 [DOI: 10.3788/IRLA20211029http://dx.doi.org/10.3788/IRLA20211029]
Czerski H, Twardowski M, Zhang X and Vagle S. 2011. Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods. Journal of Geophysical Research: Oceans, 116(C7): C00H11 [DOI: 10.1029/2011JC007177http://dx.doi.org/10.1029/2011JC007177]
Dana D R and Maffione R A. 2000. HydroBeta: a new instrument for measuring in-situ profiles of the volume scattering function from 10 to 170 degrees. Ocean Optics XV, Monaco. https://www.hobilabs.com/cmsitems/attachments/3/HydroBetaOOXVExtendedAbstract.pdfhttps://www.hobilabs.com/cmsitems/attachments/3/HydroBetaOOXVExtendedAbstract.pdf
Dana D R and Maffione R A. 2002. Determining the Backward Scattering Coefficient with Fixed-Angle Backscattering Sensors—Revisited. Ocean Optics XVI, Santa Fe, New Mexico 22(6): 18-22
Dawson L H and Hulburt E O. 1941. Angular distribution of light scattered in liquids. Journal of the Optical Society of America, 31(8): 554-558 [DOI: 10.1364/josa.31.000554http://dx.doi.org/10.1364/josa.31.000554]
Duntley S Q. 1963. Light in the sea. Journal of the Optical Society of America, 53(2): 214-233 [DOI: 10.1364/JOSA.53.000214http://dx.doi.org/10.1364/JOSA.53.000214]
Gibbs R J. 1978. Light scattering from particles of different shapes. Journal of Geophysical Research: Oceans, 83(C1): 501-502 [DOI: 10.1029/JC083iC01p00501http://dx.doi.org/10.1029/JC083iC01p00501]
Haltrin V I. 2006. Absorption and scattering of light in natural waters//Kokhanovsky A A, ed. Light Scattering Reviews. Berlin, Heidelberg: Springer: 445-486 [DOI: 10.1007/3-540-37672-0_10http://dx.doi.org/10.1007/3-540-37672-0_10]
Harrison V G W. 1946. The light-diffusing properties of magnesium oxide. Proceedings of the Physical Society, 58(4): 408-419 [DOI: 10.1088/0959-5309/58/4/309http://dx.doi.org/10.1088/0959-5309/58/4/309]
Hodkinson J R. 1963. Light scattering and extinction by irregular particles larger than the wavelength. Ices Electromagnetic Scattering. Postdam: Milton Kerer: 87-100
Højerslev N K. 1994. A history of early optical oceanographic instrument design in Scandinavia//Spinrad R W, Carder K L, Perry M J, eds. Ocean Optics. Oxford: Oxford University Press: 118-147
Hu L B, Zhang X D, Xiong Y H and He M X. 2019. Calibration of the LISST-VSF to derive the volume scattering functions in clear waters. Optics Express, 27(16): A1188-A1206 [DOI: 10.1364/oe.27.0a1188http://dx.doi.org/10.1364/oe.27.0a1188]
Jerlov N G. 1961. Optical measurements in the eastern North Atlantic. (“Discovery Ⅱ” expedition of August and September 1959). Meddelanden från Oceanografiska Institutet i Göteborg. 30. 22-32
Krishnan K S. 1925. LXXV. On the molecular scattering of light in liquids. Philosophical Magazine, 50(298): 697-715 [DOI: 10.1080/14786442508634789http://dx.doi.org/10.1080/14786442508634789]
Kullenberg G. 1968. Scattering of light by sargasso sea water. Deep Sea Research and Oceanographic Abstracts, 15(4): 423-432 [DOI: 10.1016/0011-7471(68)90050-8http://dx.doi.org/10.1016/0011-7471(68)90050-8]
Kullenberg G. 1978. Light-scattering observations in frontal zones. Journal of Geophysical Research: Oceans, 83(C9): 4683-4690 [DOI: 10.1029/JC083iC09p04683http://dx.doi.org/10.1029/JC083iC09p04683]
Kullenberg G. 1984. Observations of light scattering functions in two oceanic areas. Deep Sea Research Part A. Oceanographic Research Papers, 31(3): 295-316 [DOI: 10.1016/0198-0149(84)90106-7http://dx.doi.org/10.1016/0198-0149(84)90106-7]
Lee M E and Lewis M R. 2003. A new method for the measurement of the optical volume scattering function in the upper ocean. Journal of Atmospheric and Oceanic Technology, 20(4): 563-571 [DOI: 10.1175/1520-0426(2003)20<563:anmftm>2.0.co;2http://dx.doi.org/10.1175/1520-0426(2003)20<563:anmftm>2.0.co;2]
Lee Z P, Carder K L and Arnone R A. 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27): 5755-5772 [DOI: 10.1364/ao.41.005755http://dx.doi.org/10.1364/ao.41.005755]
Li C, Cao W X and Yang Y Z. 2012. Optical scattering property: spatial and angle variability in Daya Bay. Chinese Optics Letters, 10(S2): S20101 [DOI: 10.3788/col201210.s20101http://dx.doi.org/10.3788/col201210.s20101]
Li C, Cao W X, Yang Y Z and Xu Z T. 2015. The optical scattering property: spatial and angle variability in Northern South China Sea//Proceedings Volume 9449, The International Conference on Photonics and Optical Engineering. Xi’an: SPIE [DOI: 10.1117/12.2075865http://dx.doi.org/10.1117/12.2075865]
Maffione R A, Dana D R and Honey R C. 1991. Instrument for underwater measurement of optical backscatter//Proceedings Volume 1537, Underwater Imaging, Photography, and Visibility. San Diego: SPIE: 173-184 [DOI: 10.1117/12.48882http://dx.doi.org/10.1117/12.48882]
Maffione R A and Dana D R. 1997. Instruments and methods for measuring the backward-scattering coefficient of ocean waters. Applied Optics, 36(24): 6057-6067 [DOI: 10.1364/AO.36.006057http://dx.doi.org/10.1364/AO.36.006057]
Martin W H and Lehrman S. 1922. The scattering of light by dust-free liquids. II. The Journal of Physical Chemistry, 26(1): 75-88 [DOI: 10.1021/j150217a006http://dx.doi.org/10.1021/j150217a006]
McLeroy-Etheridge S L and Roesler C S. 1998. Are the inherent optical properties of phytoplankton responsible for the distinct ocean colors observed during harmful algal blooms?//Ocean Optics XIV. Kailua-Kona, Hawaii: [s.n.]
Mobley C D, Sundman L K and Boss E. 2002. Phase function effects on oceanic light fields. Applied Optics, 41(6): 1035-1050 [DOI: 10.1364/ao.41.001035http://dx.doi.org/10.1364/ao.41.001035]
Moore C, Twardowski M S and Zaneveld J R V. 2000. The ECO VSF: a multiangle scattering sensor for determination of the volume scattering function in the backward direction. Ocean Optics XV, Monaco
Oishi T. 1990. Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120°. Applied Optics, 29(31): 4658-4665 [DOI: 10.1364/ao.29.004658http://dx.doi.org/10.1364/ao.29.004658]
Pak H, Zaneveld J R V and Beardsley G F. 1971. Mie scattering by suspended clay particles. Journal of Geophysical Research, 76(21): 5065-5069 [DOI: 10.1029/JC076i021p05065http://dx.doi.org/10.1029/JC076i021p05065]
Pettersson H. 1934a. Scattering and extinction of light in sea-water. [s.l.]: Elanders Boktryckeri Aktiebolag
Pettersson H. 1934b. A transparency-meter for sea-water. [s.l.]: Elanders Boktryckeri Aktiebolag
Pettersson H. 1936. Transparency of sea-water. Nature, 137(3454): 68 [DOI: 10.1038/137068a0http://dx.doi.org/10.1038/137068a0]
Pettersson H. 1939. Oceanografi: vetenskapen om havet. Stockholm: Albert Bonniers Förlag
Petzold T J. 1972. Volume Scattering Functions for Selected Ocean Waters. Scripps Institution of Oceanography
Preston J S. 1929. The reflection factor of magnesium oxide. Transactions of the Optical Society, 31(1): 15-35 [DOI: 10.1088/1475-4878/31/1/303http://dx.doi.org/10.1088/1475-4878/31/1/303]
Raman C V and Rao K S. 1923. LXIII. On the molecular scattering and extinction of light in liquids and the determination of the Avogadro constant. Philosophical Magazine, 45(267): 625-640 [DOI: 10.1080/14786442308634152http://dx.doi.org/10.1080/14786442308634152]
Rehm E and McCormick N J. 2011. Inherent optical property estimation in deep waters. Optics Express, 19(25): 24986-25005 [DOI: 10.1364/oe.19.024986http://dx.doi.org/10.1364/oe.19.024986]
Ryde J W. 1931. The scattering of light by turbid media. –Part I. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 131(817): 451-464 [DOI: 10.1098/rspa.1931.0064http://dx.doi.org/10.1098/rspa.1931.0064]
Slade W H and Boss E S. 2006. Calibrated near-forward volume scattering function obtained from the LISST particle sizer. Optics Express, 14(8): 3602-3615 [DOI: 10.1364/oe.14.003602http://dx.doi.org/10.1364/oe.14.003602]
Smith R C and Baker K S. 1982. Oceanic chlorophyll concentrations as determined by satellite (Nimbus-7 Coastal Zone Color Scanner). Marine Biology, 66(3): 269-279 [DOI: 10.1007/bf00397032http://dx.doi.org/10.1007/bf00397032]
Sokolov A, Chami M, Dmitriev E and Khomenko G. 2010. Parameterization of volume scattering function of coastal waters based on the statistical approach. Optics Express, 18(5): 4615-4636 [DOI: 10.1364/OE.18.004615http://dx.doi.org/10.1364/OE.18.004615]
Spilhaus A F. 1968. Observations of light scattering in seawater. Limnology and Oceanography, 13(3): 418-422 [DOI: 10.4319/lo.1968.13.3.0418http://dx.doi.org/10.4319/lo.1968.13.3.0418]
Sullivan J M and Twardowski M S. 2009. Angular shape of the oceanic particulate volume scattering function in the backward direction. Applied Optics, 48(35): 6811-6819 [DOI: 10.1364/ao.48.006811http://dx.doi.org/10.1364/ao.48.006811]
Tan H, Doerffer R, Oishi T and Tanaka A. 2013. A new approach to measure the volume scattering function. Optics Express, 21(16): 18697-18711 [DOI: 10.1364/oe.21.018697http://dx.doi.org/10.1364/oe.21.018697]
Tan H, Oishi T, Tanaka A and Doerffer R. 2015. Accurate estimation of the backscattering coefficient by light scattering at two backward angles. Applied Optics, 54(25): 7718-7733 [DOI: 10.1364/ao.54.007718http://dx.doi.org/10.1364/ao.54.007718]
Tan H, Oishi T, Tanaka A, Doerffer R and Tan Y. 2017. Chlorophyll-a specific volume scattering function of phytoplankton. Optics Express, 25(12): A564-A573 [DOI: 10.1364/oe.25.00a564http://dx.doi.org/10.1364/oe.25.00a564]
Twardowski M, Zhang X D, Vagle S, Sullivan J, Freeman S, Czerski H, You Y, Bi L and Kattawar G. 2012. The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations. Journal of Geophysical Research: Oceans, 117(C7): C00H17 [DOI: 10.1029/2011jc007347http://dx.doi.org/10.1029/2011jc007347]
Twardowski M S, Boss E, Macdonald J B, Pegau W S, Barnard A H and Zaneveld J R V. 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research: Oceans, 106(C7): 14129-14142 [DOI: 10.1029/2000jc000404http://dx.doi.org/10.1029/2000jc000404]
Twardowski M S, Claustre H, Freeman S A, Stramski D and Huot Y. 2007. Optical backscattering properties of the “clearest” natural waters. Biogeosciences, 4(6): 1041-1058 [DOI: 10.5194/bg-4-1041-2007http://dx.doi.org/10.5194/bg-4-1041-2007]
Tyler J E and Richardson W H. 1958. Nephelometer for the measurement of volume scattering function in situ. Journal of the Optical Society of America, 48(5): 354-357 [DOI: 10.1364/josa.48.000354http://dx.doi.org/10.1364/josa.48.000354]
Wyatt P J. 1993. Light scattering and the absolute characterization of macromolecules. Analytica Chimica Acta, 272(1): 1-40 [DOI: 10.1016/0003-2670(93)80373-shttp://dx.doi.org/10.1016/0003-2670(93)80373-s]
Xu C H and Li C. 2019. Progress of measurement technology and application of general-angle Volume Scattering Function of water. Journal of Remote Sensing, 23(6): 1078-1090
徐聪辉, 李彩. 2019. 广角水体体散射函数测量技术及其应用研究进展. 遥感学报, 23(6): 1078-1090 [DOI: 10.11834/jrs.20198078http://dx.doi.org/10.11834/jrs.20198078]
Zhang X D, Lewis M, Lee M, Johnson B and Korotaev G. 2002. The volume scattering function of natural bubble populations. Limnology and Oceanography, 47(5): 1273-1282 [DOI: 10.4319/lo.2002.47.5.1273http://dx.doi.org/10.4319/lo.2002.47.5.1273]
Zhou W, Wang G F, Sun Z H, Cao W X, Xu Z T, Hu S B and Zhao J. 2012. Variations in the optical scattering properties of phytoplankton cultures. Optics Express, 20(10): 11189-11206 [DOI: 10.1364/oe.20.011189http://dx.doi.org/10.1364/oe.20.011189]
相关作者
相关机构