新一代人工智能驱动的陆地观测卫星遥感应用技术综述
A review of land observation satellite remote sensing application technology with new generation artificial intelligence
- 2022年26卷第8期 页码:1530-1546
纸质出版日期: 2022-08-07
DOI: 10.11834/jrs.20221555
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-08-07 ,
扫 描 看 全 文
赖积保,康旭东,鲁续坤,李树涛.2022.新一代人工智能驱动的陆地观测卫星遥感应用技术综述.遥感学报,26(8): 1530-1546
Lai J B,Kang X D,Lu X K and Li S T. 2022. A review of land observation satellite remote sensing application technology with new generation artificial intelligence. National Remote Sensing Bulletin, 26(8):1530-1546
随着各国航天事业的高速发展以及政府对卫星遥感技术的大力支持,各类军民商用卫星系统层出不穷,建立了较为完善的卫星遥感数据获取体系,为推动经济社会高质量发展提供了新动能。与此同时,人工智能技术的迅猛发展极大程度的提升了数据分析的智能化、精准化水平,为遥感大数据分析与应用带来了新的发展机遇。在互联网时代的背景下,结合新一代人工智能、大数据、物联网、5G等先进技术,推动遥感应用朝着智能化、大众化、产业化方向发展是大势所趋。本文依据当前陆地观测卫星智能遥感技术的发展现状与实际需求,论述了人工智能驱动的遥感技术在资源调查、环境监测、灾害监测等领域中的应用研究现状,探讨了现阶段制约人工智能技术在遥感领域应用成效的关键问题,最后结合遥感大数据处理中存在的问题和挑战,对陆地观测卫星遥感应用技术的发展趋势进行了展望,建立基于人工智能的卫星遥感应用体系已成为卫星遥感技术发展的必然趋势。
With the rapid development of aerospace industry and remote sensing and the strong support from the government
various military and civilian commercial satellite systems have been developed. The establishment of a relatively complete satellite remote sensing data acquisition system injects new momentum for promoting high-quality development of economy and society. At the same time
the rapid development of artificial intelligence has greatly improved the intelligence and precision of data analysis and has brought new development opportunities for remote sensing big data analysis and application. In the context of the Internet era
combining advanced technologies
such as artificial intelligence
big data
Internet of Things
and 5G
is a general trend to promote the development of remote sensing applications in the direction of intelligence
popularization
and industrialization.
Based on the current development status and actual needs of intelligent remote sensing technology for land observation satellites
first
this review briefly describes the development of earth observation satellite systems
such as GF and ZY satellites. Second
it classifies and introduces the development status and trends of artificial intelligence technology in the field of remote sensing. Furthermore
the application status of artificial intelligence-driven remote sensing technology in the fields of resource investigation
environmental monitoring
disaster monitoring
smart city
agriculture
forestry
and fishery automation analysis is discussed. Finally
by analyzing existing remote sensing technologies
the challenging problems and development trends of AI in remote sensing are concluded.
Different from previous reviews
the present study has two major contributions. On one hand
it carefully reviewed the development status of existing AI-based remote sensing methods. Although AI has been successfully and widely applied in remote sensing
its performance is still unsatisfactory and far behind the intelligence of remote sensing experts in many domains. To address this problem
further development of a new-generation AI and wider application of AI in remote sensing is the key to success. On the other hand
this work provides five typical and key future research directions of future AI-based remote sensing technologies. First
the rapid knowledge mining technology of remote sensing big data is studied
and the comprehensive perception and intelligent analysis of remote sensing are realized with the support of AI technology. Second
the collaborative sensing technology of observation network constructed by multiple remote sensing satellites is studied to achieve more comprehensive
more accurate
and more efficient earth observations. Third
cross-modal multisource remote sensing data fusion and recognition technology are investigated. By fusing multisource remote sensing data of different types
such as visible light
multispectral
infrared
hyperspectral
and microwave
the performance of remote sensing image recognition and interpretation is expected to be dramatically improved. Fourth
the on-orbit intelligent processing technology of remote sensing data
including on-orbit processing hardware and software systems
are examined. Lastly
the human-machine hybrid enhanced intelligent remote sensing technology is studied. In the future
humans and intelligent remote sensing systems are expected to be closely coupled and work together to form a stronger remote intelligent sensing ability.
卫星遥感人工智能应用服务遥感大数据数据解译
satellite remote sensingartificial intelligenceapplication servicesremote sensing big datadata interpretation
Batty M. 2018. Artificial intelligence and smart cities. Environment and Planning B: Urban Analytics and City Science, 45(1): 3-6 [DOI: 10.1177/2399808317751169http://dx.doi.org/10.1177/2399808317751169]
Bo Q, Li X L, Tao D C and Lu X Q. 2016. Deep semantic understanding of high resolution remote sensing image//2016 International Conference on Computer, Information and Telecommunication Systems (CITS). Kunming: IEEE: 1-5 [DOI: 10.1109/CITS.2016.7546397http://dx.doi.org/10.1109/CITS.2016.7546397]
Boualleg Y, Farah M and Farah I R. 2019. Remote sensing scene classification using convolutional features and deep forest classifier. IEEE Geoscience and Remote Sensing Letters, 16(12): 1944-1948 [DOI: 10.1109/LGRS.2019.2911855http://dx.doi.org/10.1109/LGRS.2019.2911855]
Cao H Y, Liu F Q, Zhao C G and Dai J. 2021. The study of high resolution stereo mapping satellite. National Remote Sensing Bulletin, 25(7): 1400-1410
曹海翊, 刘付强, 赵晨光, 戴君. 2021. 高分辨率立体测绘卫星技术研究. 遥感学报, 25(7): 1400-1410 [DOI: 10.11834/jrs.20210411http://dx.doi.org/10.11834/jrs.20210411]
Chen A L, Li J Y, Zhang S J, Zhu Y X, Zhao S J, Sun W, Zhang Q. 2020. Application of satellite remote sensing yield estimation technology in regional revenue protection crop insurance: a case of soybean. Smart Agriculture, 2(3): 139-152
陈爱莲, 李家裕, 张圣军, 朱玉霞, 赵思健, 孙伟, 张峭. 2020. 卫星遥感估产技术在大豆区域收入保险中的应用. 智慧农业, 2(3): 139-152 [DOI: 10.12133/j.smartag.2020.2.3.202006-SA002http://dx.doi.org/10.12133/j.smartag.2020.2.3.202006-SA002]
Chen H R X, Wu C, Du B, Zhang L P and Wang L. 2020a. Change detection in multisource VHR images via deep Siamese convolutional multiple-layers recurrent neural network. IEEE Transactions on Geoscience and Remote Sensing, 58(4): 2848-2864 [DOI: 10.1109/TGRS.2019.2956756http://dx.doi.org/10.1109/TGRS.2019.2956756]
Chen K Y, Chen H X, Zhou C L, Huang Y C, Qi X Y, Shen R Q, Liu F R, Zuo M, Zou X Y, Wang J F, Zhang Y, Chen D, Chen X G, Deng Y F and Ren H Q. 2020b. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Research, 171: 115454 [DOI: 10.1016/.watres.2019.115454http://dx.doi.org/10.1016/.watres.2019.115454]
Chen L, Liu K H, Zhou B D, Li Q Q. 2021. Key technologies of multi-agent collaborative high definition map construc-tion. Acta Geodaetica et Cartographica Sinica, 50(11): 1447-1456
陈龙, 刘坤华, 周宝定, 李清泉. 2021. 多智能体协同高精地图构建关键技术研究. 测绘学报, 50(11): 1447-1456 [DOI: 10.11947/j.AGCS.2021.20210259http://dx.doi.org/10.11947/j.AGCS.2021.20210259]
Chen Q, Yu R H, Hao Y L, Wu L H, Zhang W X, Zhang Q and Bu X N. 2018. A new method for mapping aquatic vegetation especially underwater vegetation in Lake Ulansuhai using GF-1 satellite data. Remote Sensing, 10(8): 1279 [DOI: 3390/rs10081279http://dx.doi.org/3390/rs10081279]
Chen R, Guo X Y, Du J and Hu X. 2020. Monitoring of disturbance on ecological environment caused by earthquake and post-disaster reconstruction at Heye Village area of Jiuzhaigou using the high-resolution remote sensing imageries. Quaternary Sciences, 2020, 40(5): 1350-1358
陈润, 郭忻怡, 杜杰, 胡晓. 2020. 地震地质灾害及灾后重建对九寨沟荷叶寨区域生态环境扰动的遥感监测. 第四纪研究, 40(5): 1350-1358 [DOI: 10.11928/j.issn.1001-7410.2020.05.22http://dx.doi.org/10.11928/j.issn.1001-7410.2020.05.22]
Chen R Z, Wang L, Li D R, Chen L and Fu W J. 2019. A survey on the fusion of the navigation and the remote sensing techniques. Acta Geodaetica et Cartographica Sinica, 48(12): 1507-1522
陈锐志, 王磊, 李德仁, 陈亮, 付文举. 2019. 导航与遥感技术融合综述. 测绘学报, 48(12): 1507-1522 [DOI: 10.11947/j.AGCS.2019.20190446http://dx.doi.org/10.11947/j.AGCS.2019.20190446]
Chen Z X, Hao P Y, Liu J, An M and Han B. 2019. Technical demands for agricultural remote sensing satellites in China. Smart Agriculture, 1(1): 32-42
陈仲新, 郝鹏宇, 刘佳, 安萌, 韩波. 2019. 农业遥感卫星发展现状及中国监测需求分析. 智慧农业, 1(1): 32-42 [DOI: 10.12133/j.smartag.2019.1.1.201901-SA003http://dx.doi.org/10.12133/j.smartag.2019.1.1.201901-SA003]
Cheng G, Han J W, Guo L, Liu Z B, Bu S H and Ren J C. 2015. Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4238-4249 [DOI: 10.1109/TGRS.2015.2393857http://dx.doi.org/10.1109/TGRS.2015.2393857]
Cheng G, Han J W, Zhou P C and Xu D. 2019. Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE Transactions on Image Processing, 28(1): 265-278 [DOI: 10.1109/TIP.2018.2867198http://dx.doi.org/10.1109/TIP.2018.2867198]
Cheng G, Si Y J, Hong H L, Yao X W and Guo L. 2021. Cross-scale feature fusion for object detection in optical remote sensing images. IEEE Geoscience and Remote Sensing Letters, 18(3): 431-435 [DOI: 10.1109/LGRS.2020.2975541http://dx.doi.org/10.1109/LGRS.2020.2975541]
Cheng G, Yang C Y, Yao X W, Guo L and Han J W. 2018. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Transactions on Geoscience and Remote Sensing, 56(5): 2811-2821 [DOI: 10.1109/TGRS.2017.2783902http://dx.doi.org/10.1109/TGRS.2017.2783902]
Darwish N, Kaiser M, Koch M and Gaber A. 2021. Assessing the accuracy of ALOS/PALSAR-2 and Sentinel-1 radar images in estimating the land subsidence of coastal areas: a case study in Alexandria City, Egypt. Remote Sensing, 13(9): 1838 [DOI: 10.3390/RS13091838http://dx.doi.org/10.3390/RS13091838]
Dembski F, Wössner U, Letzgus M, Ruddat M and Yamu C. 2020. Urban digital twins for smart cities and citizens: the case study of Herrenberg, Germany. Sustainability, 12(6): 2307 [DOI: 10.3390/su12062307http://dx.doi.org/10.3390/su12062307]
Dian R W, Li S T, Sun B and Guo A J. 2021. Recent advances and new guidelines on hyperspectral and multispectral image fusion. Information Fusion, 69: 40-51 [DOI: 10.1016/j.inffus.2020.11.001http://dx.doi.org/10.1016/j.inffus.2020.11.001]
Dou M G, Chen J Y, Chen D, Chen X D, Deng Z, Zhang X G, Xu K and Wang J. 2014. Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images. Future Generation Computer Systems, 37: 367-377 [DOI: 10.1016/j.future.2013.12.018http://dx.doi.org/10.1016/j.future.2013.12.018]
Du P J, Liu S C and Tan K. 2012. Rapid monitoring of Japan earthquake-triggered tsunami disaster based on a fusion of multiple features derived from HJ small satellite images. Science and Technology Review, 30(4): 31-36
杜培军, 柳思聪, 谭琨. 2012. 国产HJ小卫星遥感影像多特征融合用于日本海啸灾情快速监测. 科技导报, 30(4): 31-36 [DOI: 10.3981/j.issn.1000-7857.2012.04.003http://dx.doi.org/10.3981/j.issn.1000-7857.2012.04.003]
Du Z Q, Li Y, Zhang Y T, Tan Y Q and Zhao W H. 2020. Knowledge graph construction method on natural disaster emergency. Geomatics and Information Science of Wuhan University, 45(9): 1344-1355
杜志强, 李钰, 张叶廷, 谭玉琪, 赵文豪. 2020. 自然灾害应急知识图谱构建方法研究. 武汉大学学报(信息科学版), 45(9): 1344-1355 [DOI: 10.13203/j.whugis20200047http://dx.doi.org/10.13203/j.whugis20200047]
Duan P H, Ghamisi P, Kang X D, Rasti B, Li S T and Gloaguen R. 2021. Fusion of dual spatial information for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 59(9): 7726-7738 [DOI: 10.1109/tgrs.2020.3031928http://dx.doi.org/10.1109/tgrs.2020.3031928]
Duan P H, Lai J B, Kang J, Kang X D, Ghamisi P and Li S T. 2020. Texture-aware total variation-based removal of sun glint in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 166: 359-372 [DOI: 10.1016/j.isprsjprs.2020.06.009http://dx.doi.org/10.1016/j.isprsjprs.2020.06.009]
Fan Y D, Wu W, Wang W, Liu M and Wen Q. 2016. Research progress of disaster remote sensing in China. Journal of Remote Sensing, 20(5): 1170-1184
范一大, 吴玮, 王薇, 刘明, 温奇. 2016. 中国灾害遥感研究进展. 遥感学报, 20(5): 1170-1184 [DOI: 10.11834/jrs.20166171http://dx.doi.org/10.11834/jrs.20166171]
Feng W L, Zheng H Y. 2021. Analysis on Application of Remote Sensing Technology in Agricultural Insurance. Rural finance research, 7:3-8
冯文丽, 郑昊宇. 2021. 遥感技术在农业保险领域中的应用分析. 农村金融研究, 7:3-8 [DOI: 10.16127/j.cnki.issn1003-1812.2021.07.001http://dx.doi.org/10.16127/j.cnki.issn1003-1812.2021.07.001]
Feng X X, Han J W, Yao X W and Cheng G. 2020a. Progressive contextual instance refinement for weakly supervised object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 58(11): 8002-8012 [DOI: 10.1109/TGRS.2020.2985989http://dx.doi.org/10.1109/TGRS.2020.2985989]
Feng Y, Liu S C and Tang L Y. 2020b. Automatic extraction and change monitoring of fire disaster event based on high-resolution nighttime light remote sensing images//Proceedings Volume 11533, Image and Signal Processing for Remote Sensing XXVI. Edinburgh: SPIE: 57-65 [DOI: 10.1117/12.2575804http://dx.doi.org/10.1117/12.2575804]
Gao L R, Gu D X, Zhuang L N, Ren J C, Yang D and Zhang B. 2020. Combining t-distributed stochastic neighbor embedding with convolutional neural networks for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17(8): 1368-1372 [DOI: 10.1109/LGRS.2019.2945122http://dx.doi.org/10.1109/LGRS.2019.2945122]
Gao L R, Sun X, Luo W F, Tang M F and Zhang B. 2018. Swarm intelligence algorithms for spectral unmixing in hyperspectral image. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 10(1): 81-91
高连如, 孙旭, 罗文斐, 唐茂峰, 张兵. 2018. 高光谱遥感图像混合像元分解的群智能算法. 南京信息工程大学学报(自然科学版), 10(1): 81-91 [DOI: 10.13878 /j.cnki.jnuist.2018.01.008http://dx.doi.org/10.13878/j.cnki.jnuist.2018.01.008]
Gao W, Tian Y H and Wang J. 2018. Digital retina: revolutionizing camera systems for the smart city. Scientia Sinica Informationis, 48(8): 1076-1082
高文, 田永鸿, 王坚. 2021. 数字视网膜: 智慧城市系统演进的关键环节. 中国科学: 信息科学, 48(8): 1076-1082 [DOI: 10.1360/N112018-00025http://dx.doi.org/10.1360/N112018-00025]
Gao Y N, Li Q, Wang S S and Gao J F. 2018. Adaptive neural network based on segmented particle swarm optimization for remote-sensing estimations of vegetation biomass. Remote Sensing of Environment, 211: 248-260 [DOI: 10.1016/jrse.2018.04.026http://dx.doi.org/10.1016/jrse.2018.04.026]
Ghaffarian S, Valente J, van der Voort M and Tekinerdogan B. 2021. Effect of attention mechanism in deep learning-based remote sensing image processing: a systematic literature review. Remote Sensing, 13(15): 2965 [DOI: 10.3390/rs13152965http://dx.doi.org/10.3390/rs13152965]
Gong J Y and Zhong Y F. 2016. Survey of intelligent optical remote sensing image processing. Journal of Remote Sensing, 20(5): 733-747
龚健雅, 钟燕飞. 2016. 光学遥感影像智能化处理研究进展. 遥感学报, 20(5): 733-747 [DOI: 10.11834/jrs.20166205http://dx.doi.org/10.11834/jrs.20166205]
Gong J Y. 2018. Chances and challenges for development of surveying and remote sensing in the age of artificial intelligence. Geomatics and Information Science of Wuhan University, 43(12): 1788-1796
龚健雅. 2018. 人工智能时代测绘遥感技术的发展机遇与挑战. 武汉大学学报(信息科学版), 43(12): 1788-1796 [DOI: 10.13203/j.whugis20180082http://dx.doi.org/10.13203/j.whugis20180082]
Gong P, Liu H, Zhang M N, Li C C, Wang J, Huang H B, Clinton N, Ji L Y, Li W Y, Bai Y Q, Chen B, Xu B, Zhu Z L, Yuan C, Suen H P, Guo J, Xu N, Li W J, Zhao Y Y, Yang J, Yu C Q, Wang X, Fu H H, Yu L, Dronova I, Hui F M, Cheng X, Shi X L, Xiao F J, Liu Q F and Song L C. 2019. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6): 370-373 [DOI: 10.1016/J.SCIB.2019.03.002http://dx.doi.org/10.1016/J.SCIB.2019.03.002]
Gong P, Zhang H, Zhang H Y, Liang L and Wang L. 2011. Mapping tsunami damaged area caused by the magnitude 9.0 Japan earthquake using China’s HJ-1 satellite imagery. Journal of Remote Sensing, 15(4): 863-868
宫鹏,张晗,张海英,等. 2011. 用中国环境减灾卫星1号数据评估日本仙台9.0级大地震引发海啸淹没区. 遥感学报,2011,15(4):863-868 [DOI:10.11834/jrs.20110416http://dx.doi.org/10.11834/jrs.20110416]
Gu X F and Tong X D. 2015. Overview of China earth observation satellite programs [space agencies]. IEEE Geoscience and remote Sensing Magazine, 3(3): 113-129 [DOI: 10.1109/MGRS.2015.2467172http://dx.doi.org/10.1109/MGRS.2015.2467172]
Gu Y F, Liu T Z and Li J. 2019. Superpixel tensor model for spatial-spectral classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57(7): 4705-4719 [DOI: 10.1109/TGRS.2019.2892516http://dx.doi.org/10.1109/TGRS.2019.2892516]
Gu Y F, Liu T Z, Gao G M, Ren G B, Ma Y, Chanussot J and Jia X P. 2021. Multimodal hyperspectral remote sensing: an overview and perspective. Science China Information Sciences, 64(2): 121301 [DOI: 10.1007/s11432-020-3084-1http://dx.doi.org/10.1007/s11432-020-3084-1]
Guan Z F, Cheng X, Liu Y, Qu Y T and Li T. 2021. Extracting icebergs freeboard from the shadows in Landsat-8 panchromatic images. Journal of Remote Sensing, 0
关真富, 程晓, 刘岩, 璩榆桐,李腾. 2021. 基于Landsat-8全色影像阴影的冰山出水高度提取. 遥感学报, 0 [DOI: 10.11834/jrs.20219383http://dx.doi.org/10.11834/jrs.20219383]
Guo H D, Fu W X and Liu G. 2019. Chinese earth observation satellites//Guo H D, Fu W X and Liu G, eds. Scientific Satellite and Moon-Based Earth Observation for Global Change. Singapore: Springer: 189-243 [DOI: 10.1007/978-981-13-8031-0_6http://dx.doi.org/10.1007/978-981-13-8031-0_6]
Guo H D, Wang L Z and Liang D. 2016. Big Earth Data from space: a new engine for Earth science. Science Bulletin, 61(7): 505-513 [DOI: 10.1007/s11434-016-1041-yhttp://dx.doi.org/10.1007/s11434-016-1041-y]
Hu Y, Li X D, Gu Y F and Jacob M. 2020. Hyperspectral image recovery using nonconvex sparsity and low-rank regularizations. IEEE Transactions on Geoscience and Remote Sensing, 58(1): 532-545 [DOI: 10.1109/TGRS.2019.2937901http://dx.doi.org/10.1109/TGRS.2019.2937901]
Huang B and Zhao Y Q. 2017. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery. Acta Geodaetica et Cartographica Sinica, 46(10): 1492-1499
黄波, 赵涌泉. 2017. 多源卫星遥感影像时空融合研究的现状及展望. 测绘学报, 46(10): 1492-1499 [DOI: 10.11947/j.AGCS.2017.20170376http://dx.doi.org/10.11947/j.AGCS.2017.20170376]
Jin K L and Hao L. 2020. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model. Remote Sensing for Land and Resources, 32(2): 204-212
金楷仑, 郝璐. 2020. 基于遥感数据与SEBAL模型的江浙沪地区地表蒸散反演. 国土资源遥感, 32(2): 204-212 [DOI: 10.6046/gtzyyg.2020.02.26http://dx.doi.org/10.6046/gtzyyg.2020.02.26]
Jin X L, Li Z H, Feng H K, Ren Z B and Li S K. 2020. Deep neural network algorithm for estimating maize biomass based on simulated Sentinel 2A vegetation indices and leaf area index. The Crop Journal, 8(1): 87-97 [DOI: 10.1016/j.cj.2019.06.005http://dx.doi.org/10.1016/j.cj.2019.06.005]
Kaku K. 2019. Satellite remote sensing for disaster management support: a holistic and staged approach based on case studies in Sentinel Asia. International Journal of Disaster Risk Reduction, 33: 417-432 [DOI: 10.1016/j.ijdrr.2018.09.015http://dx.doi.org/10.1016/j.ijdrr.2018.09.015]
Kang X D, Li S T and Benediktsson J A. 2014. Feature extraction of hyperspectral images with image fusion and recursive filtering. IEEE Transactions on Geoscience and Remote Sensing, 52(6): 3742-3752 [DOI: 10.1109/TGRS.2013.2275613http://dx.doi.org/10.1109/TGRS.2013.2275613]
Kang X D, Li S T, Fang L Y and Benediktsson J A. 2015. Intrinsic image decomposition for feature extraction of hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 53(4): 2241-2253 [DOI: 10.1109/TGRS.2014.2358615http://dx.doi.org/10.1109/TGRS.2014.2358615]
Kang X D, Xiang X L, Li S T and Benediktsson J A. 2017. PCA-based edge-preserving features for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(12): 7140-7151 [DOI: 10.1109/TGRS.2017.2743102http://dx.doi.org/10.1109/TGRS.2017.2743102]
Kattenborn T, Leitloff J, Schiefer F and Hinz S. 2021. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173: 24-49 [DOI: 10.1016/J.ISPRSJPRS.2020.12.010http://dx.doi.org/10.1016/J.ISPRSJPRS.2020.12.010]
Kleynhans T, Montanaro M, Gerace A and Kanan C. 2017. Predicting top-of-atmosphere thermal radiance using MERRA-2 atmospheric data with deep learning. Remote Sensing, 9(11): 1133 [DOI: 103390/rs9111133http://dx.doi.org/103390/rs9111133]
Lary D J, Alavi A H, Gandomi A H, Walker A L. 2016. Machine learning in geosciences and remote sensing. Geoscience frontiers, 7(1): 3-10 [DOI: 10.1016/j.gsf.2015.07.003http://dx.doi.org/10.1016/j.gsf.2015.07.003]
Li D R, Ding L and Shao Z F. 2021. Application-oriented real-time remote sensing service technology. National Remote Sensing Bulletin, 25(1): 15-24
李德仁, 丁霖, 邵振峰. 2021. 面向实时应用的遥感服务技术. 遥感学报, 25(1): 15-24 [DOI: 10.11834/jrs.20210260http://dx.doi.org/10.11834/jrs.20210260]
Li D R, Yao Y and Shao Z F. 2014a. Big data in smart city. Geomatics and Information Science of Wuhan University, 39(6): 631-640
李德仁, 姚远, 邵振峰. 2014a. 智慧城市中的大数据. 武汉大学学报(信息科学版), 39(6): 631-640 [DOI: 10.13203/j.whugis20140135http://dx.doi.org/10.13203/j.whugis20140135]
Li D R, Zhang L P and Xia G S. 2014b. Automatic analysis and mining of remote sensing big data. Acta Geodaetica et Cartographica Sinica, 43(12): 1211-1216
李德仁, 张良培, 夏桂松. 2014b. 遥感大数据自动分析与数据挖掘. 测绘学报, 43(12): 1211-1216 [DOI: 10.13485/j.cnki.11-2089.2014.0187http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0187]
Li D R. 2019a. How to realize intelligent service of spatial information in 5G era. Scientific Chinese, (19): 44-45
李德仁. 2019a. 5G时代空间信息如何实现智能服务. 科学中国人, (19): 44-45
Li D R. 2019b. The intelligent processing and service of spatiotemporal big data. Journal of Geo-Information Science, 21(12): 1825-1831
李德仁. 2019b. 论时空大数据的智能处理与服务. 地球信息科学学报, 21(12): 1825-1831 [DOI: 10.12082/dqxxkx.2019.190694http://dx.doi.org/10.12082/dqxxkx.2019.190694]
Li F G, Li E Z, Samat A, Zhang L P, Liu W and Hu J S. 2020. Estimation of large-scale impervious surface percentage by fusion of multi-source time series remote sensing data. Journal of Remote Sensing, 24(10):1243-1254
李方刚, 李二珠, 阿里木·赛买提, 张连蓬, 刘伟, 胡晋山. 2020. 融合多源时序遥感数据大尺度不透水面覆盖率估算. 遥感学报, 24(10): 1243-1254 [DOI: 10.11834/jrs.20209450http://dx.doi.org/10.11834/jrs.20209450]
Li J Y, Yan G R, Li Z G and Bai Z G. 2020. Research on technology development of the intelligent remote sensing satellites system. Spacecraft Recovery and Remote Sensing, 41(6): 34-44
李军予, 闫国瑞, 李志刚, 白照广. 2020. 智能遥感星群技术发展研究. 航天返回与遥感, 41(6): 34-44 [DOI: 10.3969/j.issn.1009-8518.2020.06.004http://dx.doi.org/10.3969/j.issn.1009-8518.2020.06.004]
Li J, Huang X, Gong J. 2019. Deep neural network for remote-sensing image interpretation: status and perspectives. National Science Review, 6(6): 1082-1086 [DOI:10.1093/nsr/nwz058http://dx.doi.org/10.1093/nsr/nwz058]
Li K, Cheng G, Bu S H and You X. 2018a. Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 2337-2348 [DOI: 10.1109/TGRS.2017.2778300http://dx.doi.org/10.1109/TGRS.2017.2778300]
Li K, Wan G, Cheng G, Meng L Q and Han J W. 2020a. Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 296-307 [DOI: 10.1016/j.isprsjprs.2019.11.023http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023]
Li S T, Dian R, Fang L Y and Bioucas-Dias J M. 2018b. Fusing hyperspectral and multispectral images via coupled sparse tensor factorization. IEEE Transactions on Image Processing, 27(8): 4118-4130 [DOI: 10.1109/TIP.2018.2836307http://dx.doi.org/10.1109/TIP.2018.2836307]
Li S T, Li C Y and Kang X D. 2021. Development status and future prospects of multi-source remote sensing image fusion. National Remote Sensing Bulletin, 25(1): 148-166
李树涛, 李聪妤, 康旭东. 2021. 多源遥感图像融合发展现状与未来展望. 遥感学报, 25(1): 148-166 [DOI: 10.11834/jrs.20210259http://dx.doi.org/10.11834/jrs.20210259]
Li T W, Shen H F, Yuan Q Q, Zhang X C and Zhang L P. 2017. Estimating ground-level PM2.5 by fusing satellite and station observations a geo-intelligent deep learning approach Geophysical Research Letters, 44(23): 11985-11993 [DOI: 10.1002/2017GL075710http://dx.doi.org/10.1002/2017GL075710]
Li W L, Zhu J, Zhu X L, Fu L, Zhang Y H, Hu Y, He Q L and Huang P C. 2019. A exploratory analysis method of VR scene in landslide based on UAV remote sensing data. Geomatics and Information Science of Wuhan University, 44(7): 1065-1072
李维炼, 朱军, 朱秀丽, 付林, 张昀昊, 胡亚, 何秋玲, 黄鹏诚. 2019. 无人机遥感数据支持下滑坡VR场景探索分析方法. 武汉大学学报(信息科学版), 44(7): 1065-1072 [DOI: 10.13203/j.whugis20190047http://dx.doi.org/10.13203/j.whugis20190047]
Li X, Zhu J, Yin X D, Yao J C, Huang J L and Li M T. 2019. Mapping construction land of Guangzhou based on Luojia No. 1 nightlight data. Journal of Geo-Information Science, 21(11): 1802-1810
李翔, 朱江, 尹向东, 姚江春, 黄嘉玲, 李密滔. 2019. 基于珞珈一号夜间灯光数据的广州市建设用地识别. 地球信息科学学报, 21(11): 1802-1810 [DOI: 10.12082/dqxxkx.2019.190041http://dx.doi.org/10.12082/dqxxkx.2019.190041]
Liao W Z, Coillie F V, Gao L R, Li L W, Zhang B and Chanussot J. 2018. Deep learning for fusion of APEX hyperspectral and full-waveform LiDAR Remote sensing data for tree species mapping. IEEE Access, 6: 68716-68729 [DOI: 10.1109/ACCESS.2018.2880083http://dx.doi.org/10.1109/ACCESS.2018.2880083]
Liao X H. 2020. Advance of geographic sciences and new technology applications. Progress in Geography, 39(5): 709-715
廖小罕. 2020. 地理科学发展与新技术应用. 地理科学进展, 39(5): 709-715 [DOI: 10.18306/dikxjz.2020.05001http://dx.doi.org/10.18306/dikxjz.2020.05001]
Liao X H. 2021. Scientific and technological progress and development prospect of the earth observation in China in the past 20 years. National Remote Sensing Bulletin, 25(1): 267-275
廖小罕. 2021. 中国对地观测20年科技进步和发展. 遥感学报, 25(1): 267-275 [DOI: 10.11834/jrs.20211017http://dx.doi.org/10.11834/jrs.20211017]
Lin H, Chen M, Lu G N, Zhu Q, Gong J H, You X, Wen Y N, Xu B L and Hu M Y. 2013. Virtual Geographic Environments (VGEs): a new generation of geographic analysis tool. Earth-Science Reviews, 126: 74-84 [DOI: 10.1016/j.earscirev.2013.08.001http://dx.doi.org/10.1016/j.earscirev.2013.08.001]
Liu H and Gong P. 2021. 21st century daily seamless data cube reconstruction and seasonal to annual land cover and land use dynamics mapping-iMap (China) 1.0. National Remote Sensing Bulletin, 25(1): 126-147
刘涵, 宫鹏. 2021. 21世纪逐日无缝数据立方体构建方法及逐年逐季节土地覆盖和土地利用动态制图—中国智慧遥感制图iMap (China) 1.0. 遥感学报, 25(1): 126-147 [DOI: 10.11834/jrs.20210580http://dx.doi.org/10.11834/jrs.20210580]
Liu J. 2021. Performance of cloud fraction of three satellite cloud climate date records over the Tibetan Plateau. National Remote Sensing Bulletin, 25(7): 1445-1459
刘健. 2021. 三种卫星云量数据在青藏高原地区的比对分析. 遥感学报, 25(7): 1445-1459 [DOI: 10.11834/jrs.20219262http://dx.doi.org/10.11834/jrs.20219262]
Liu M W, Zhu J, Zhu Q, Qi H, Yin L Z, Zhang X, Feng B, He H G, Yang W J and Chen L Y. 2017a. Optimization of simulation and visualization analysis of dam-failure flood disaster for diverse computing systems. International Journal of Geographical Information Science, 31(9): 1891-1906 [DOI: 10.1080/13658816.2017.1334897http://dx.doi.org/10.1080/13658816.2017.1334897]
Liu S C, Chi M M, Zou Y X, Samat A, Benediktsson J A and Plaza A. 2017b. Oil spill detection via multitemporal optical remote sensing images: a change detection perspective. IEEE Geoscience and Remote Sensing Letters, 14(3): 324-328 [DOI: 10.1109/LGRS.2016.2639540http://dx.doi.org/10.1109/LGRS.2016.2639540]
S C, Zheng Y J, Du Q, Samat A, Tong X H and Dalponte M. 2021a. A novel feature fusion approach for VHR remote sensing image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 464-473 [DOI: 10.1109/JSTARS.2020.3041868http://dx.doi.org/10.1109/JSTARS.2020.3041868]
Liu X J, Zhao C Y, Zhang Q, Lu Z, Li Z H, Yang C S, Zhu W, Liu-Zeng J, Chen L Q and Liu C J. 2021b. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Engineering Geology, 284: 106033 [DOI: 10.1016/j.enggeo.2021.106033http://dx.doi.org/10.1016/j.enggeo.2021.106033]
Lu N M, Zheng W, Wang X, Gao L, Liu Q H, Wu S L, Jiang J Y, Gu S Y and Fang X. 2017. Overview of meteorological satellite and its data application in weather analysis, climate and environment disaster monitoring. Journal of Marine Meteorology, 37(1): 20-30
卢乃锰, 郑伟, 王新, 高玲, 刘清华, 武胜利, 蒋建莹, 谷松岩, 方翔. 2017. 气象卫星及其产品在天气气候分析和环境灾害监测中的应用概述. 海洋气象学报, 37(1): 20-30 [DOI: 10.19513/j.cnki.issn2096-3599.2017.01.003http://dx.doi.org/10.19513/j.cnki.issn2096-3599.2017.01.003]
Lu X Q, Sun H and Zheng X T. 2019. A feature aggregation convolutional neural network for remote sensing scene classification. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7894-7906 [DOI: 10.1109/TGRS.2019.2917161http://dx.doi.org/10.1109/TGRS.2019.2917161]
Lu X Q, Wang B Q and Zheng X T. 2020. Sound active attention framework for remote sensing image captioning. IEEE Transactions on Geoscience and Remote Sensing, 58(3): 1985-2000 [DOI: 10.1109/TGRS.2019.2951636http://dx.doi.org/10.1109/TGRS.2019.2951636]
Luo R, Wang L, Xiao Y J, He Y and Zhao D F. 2020. Application of deep learning technology in military field. Command Control and Simulation, 42(1): 1-5
罗荣, 王亮, 肖玉杰, 何翼, 赵东峰. 2020. 深度学习技术在军事领域应用. 指挥控制与仿真, 42(1): 1-5 [DOI: 10.3969/j.issn.1673-3819.2020.01.001http://dx.doi.org/10.3969/j.issn.1673-3819.2020.01.001]
Ma D A, Tang P and Zhao L J. 2019a. SiftingGAN: generating and sifting labeled samples to improve the remote sensing image scene classification baseline in vitro. IEEE Geoscience and Remote Sensing Letters, 16(7): 1046-1050 [DOI: 10.1109/LGRS.2018.2890413http://dx.doi.org/10.1109/LGRS.2018.2890413]
Ma L, Liu Y, Zhang X L, Ye Y X, Yin G F and Johnson B A. 2019b. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152: 166-177 [DOI: 10.1016/J.ISPRSJPRS.2019.04.015http://dx.doi.org/10.1016/J.ISPRSJPRS.2019.04.015]
Misra N N, Dixit Y, Al-Mallahi A, Bhullar M, Upadhyay R, Martynenko A I. 2022. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet of Things Journal, 9(9): 6305-6324 [DOI10.1109/JIOT.2020.2998584]
Mou L C, Bruzzone L and Zhu X X. 2019. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 924-935 [DOI: 10.1109/TGRS.2018.2863224http://dx.doi.org/10.1109/TGRS.2018.2863224]
Ning X G, Chang W T, Wang H, Zhang H C and Zhu Q D. 2022. Extraction of marsh wetland in Heilongjiang Basin based on GEE and multi-source remote sensing data. National Remote Sensing Bulletin, 26(2): 386-396
宁晓刚, 常文涛, 王浩, 张翰超, 朱乾德. 2022. 联合GEE与多源遥感数据的黑龙江流域沼泽湿地信息提取. 遥感学报, 26(2): 386-396 [DOI: 10.11834/jrs.20200033http://dx.doi.org/10.11834/jrs.20200033]
Peterson K T, Sagan V and Sloan J J. 2020. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GIScience and Remote Sensing, 57(4): 510-525 [DOI: 10.1080/15481603.2020.1738061http://dx.doi.org/10.1080/15481603.2020.1738061]
Ran Q, Yu H Y, Gao L R, Li W and Zhang B. 2018. Superpixel and subspace projection-based support vector machines for hyperspectral image classification. Journal of Image and Graphics, 23(1): 95-105
冉琼, 于浩洋, 高连如, 李伟, 张兵. 2018. 结合超像元和子空间投影支持向量机的高光谱图像分类. 中国图象图形学报, 23(1): 95-105 [DOI: 10.11834/jig.170201http://dx.doi.org/10.11834/jig.170201]
Sagan V, Peterson K T, Maimaitijiang M, Sidike P, Sloan J, Greeling B A, Maalouf S and Adams C. 2020. Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205: 103187 [DOI: 10.1016j.earscirev.2020.103187http://dx.doi.org/10.1016j.earscirev.2020.103187]
Schmidhuber J. 2015. Deep learning in neural networks: An overview. Neural networks, 61:85-117 [DOI:10.1016/j.neunet.2014.09.003http://dx.doi.org/10.1016/j.neunet.2014.09.003]
Shen X, Cao L and She G H. 2016. Subtropical forest biomass estimation based on hyperspectral and high-resolution remotely sensed data. Journal of Remote Sensing, 20(6): 1446-1460
申鑫, 曹林, 佘光辉. 2016. 高光谱与高空间分辨率遥感数据的亚热带森林生物量反演. 遥感学报, 20(6): 1446-1460
Shi K Q, Zou B, Chen S G, Xue C, Shi L J and Zhang T L. 2021. Remote sensing inversion of sea ice concentration by a middle-resolution imaging spectrometer. National Remote Sensing Bulletin, 25(3): 753-764
史凯琦, 邹斌, 陈树果, 薛程, 石立坚, 张亭禄. 2021. 中分辨率成像光谱仪的海冰密集度遥感反演. 遥感学报, 25(3): 753-764 [DOI: 10.11834/jrs.20210039http://dx.doi.org/10.11834/jrs.20210039]
State Council of the PRC. 2017. New generation artificial intelligence development plan. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htmhttp://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
国务院. 2017. 新一代人工智能发展规划. 中国政府网, [2021.08.16].http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htmhttp://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
Sun W W, Yang G, Chen C, Chang M H, Huang K, Meng X Z and Liu L Y. 2020. Development status and literature analysis of China’s earth observation remote sensing satellites. Journal of Remote Sensing (Chinese), 24(5): 479-510
孙伟伟, 杨刚, 陈超, 常明会, 黄可, 孟祥珍, 刘良云. 2020. 中国地球观测遥感卫星发展现状及文献分析. 遥感学报, 24(5): 479-510 [DOI: 10.11834/jrs.20209464http://dx.doi.org/10.11834/jrs.20209464]
Sun Z N, He R, Wang L, Kan M N, Feng J J, Zheng F, Zheng W S, Zuo W M, Kang W X, Deng W H, Zhang J, Han H, Shan S G, Wang Y L, Ru Y W, Zhu Y H, Liu Y F and He Y. 2021. Overview of biometrics research. Journal of Image and Graphics, 26(6): 1254-1329
孙哲南, 赫然, 王亮, 阚美娜, 冯建江, 郑方, 郑伟诗, 左旺孟, 康文雄, 邓伟洪, 张杰, 韩琥, 山世光, 王云龙, 茹一伟, 朱宇豪, 刘云帆, 何勇. 2021. 生物特征识别学科发展报告. 中国图象图形学报, 26(6): 1254-1329 [DOI: 10.11834/jig.210078http://dx.doi.org/10.11834/jig.210078]
Tang S F, Tian Q J, Xu K J, Xu N X and Yue J B. 2020. Age information retrieval of Larix gmelinii forest using Sentinel-2 data. Journal of Remote Sensing, 24(12): 1511-1524
唐少飞, 田庆久, 徐凯健, 徐念旭, 岳继博. 2020. Sentinel-2卫星落叶松林龄信息反演. 遥感学报, 24(12): 1511-1524 [DOI: 10.11834/jrs.20208500http://dx.doi.org/10.11834/jrs.20208500]
Tong Q X. 2021. Going along with the progress of remote sensing: for the 25th anniversary of the renaming of National Remote Sensing Bulletin. National Remote Sensing Bulletin, 25(1): 1-12
童庆禧. 2021. 与遥感发展同行——纪念《遥感学报》更名25周年. 遥感学报, 25(1): 1-12 [DOI: 10.11834/jrs.20211031http://dx.doi.org/10.11834/jrs.20211031]
Tong X D. 2016. Development of China high-resolution earth observation system. Journal of Remote Sensing, 20(5): 775-780
童旭东. 2016. 中国高分辨率对地观测系统重大专项建设进展. 遥感学报, 20(5): 775-780 [DOI: 10.11834/jrs.20166302http://dx.doi.org/10.11834/jrs.20166302]
Tong X H, Pan H Y, Liu S C, Li B B, Luo X, Xie H and Xu X. 2020. A novel approach for hyperspectral change detection based on uncertain area analysis and improved transfer learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 2056-2069 [DOI: 10.1109/JSTARS.2020.2990481http://dx.doi.org/10.1109/JSTARS.2020.2990481]
Vogt M. 2018. An overview of deep learning techniques. at - Automatisierungstechnik, 66(9):690-703 [DOI:10.1515/auto-2018-0076http://dx.doi.org/10.1515/auto-2018-0076]
Wang B Q, Zheng X T, Qu B and Lu X Q. 2020. Retrieval topic recurrent memory network for remote sensing image captioning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 256-270 [DOI: 10.1109/JSTARS.2019.2959208http://dx.doi.org/10.1109/JSTARS.2019.2959208]
Wang F, Guo Q and Ge X Q. 2021. Pan-sharpening by deep recursive residual network. National Remote Sensing Bulletin, 25(6): 1244-1256
王芬, 郭擎, 葛小青. 2021. 深度递归残差网络的遥感图像空谱融合. 遥感学报, 25(6): 1244-1256 [DOI: 10.11834/jrs.20219250http://dx.doi.org/10.11834/jrs.20219250]
Wang Q and Liu S H. 2016. Research and implementation of national environmental remote sensing monitoring system. Journal of Remote Sensing, 20(5): 1161-1169
王桥, 刘思含. 2016. 国家环境遥感监测体系研究与实现. 遥感学报, 20(5): 1161-1169 [DOI: 10.11834/jrs.20166201http://dx.doi.org/10.11834/jrs.20166201]
Wang Q, Liu S T, Chanussot J and Li X L. 2019. Scene classification with recurrent attention of VHR remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 1155-1167 [DOI: 10.1109/TGRS.2018.2864987http://dx.doi.org/10.1109/TGRS.2018.2864987]
Wang Q. 2021. Progress of environmental remote sensing monitoring technology in China and some related frontier issues. National Remote Sensing Bulletin, 25(1): 25-36
王桥. 2021. 中国环境遥感监测技术进展及若干前沿问题. 遥感学报, 25(1): 25-36 [DOI: 10.11834/jrs.20210572http://dx.doi.org/10.11834/jrs.20210572]
Wang Y P, Li R, Hu J H, Wang X W, Kabeja C, Min Q L and Wang Y. 2021. Evaluations of MODIS and microwave based satellite evapotranspiration products under varied cloud conditions over East Asia forests. Remote Sensing of Environment, 264: 112606 [DOI: 10.1016/j.rse.2021.112606http://dx.doi.org/10.1016/j.rse.2021.112606]
Wen F P, Zhao W, Hu L, Xu H X and Cui Q. 2021. SMAP passive microwave soil moisture spatial downscaling based on optical remote sensing data: a case study in Shandian River basin. National Remote Sensing Bulletin, 25(4): 962-973
文凤平, 赵伟, 胡路, 徐红新, 崔倩. 2021. 耦合MODIS数据的SMAP被动微波土壤水分空间降尺度研究——以闪电河流域为例. 遥感学报, 25(4): 962-973 [DOI: 10.11834/jrs.20219393http://dx.doi.org/10.11834/jrs.20219393]
Wolanin A, Camps-Valls G, Gómez-Chova L, Mateo-García G, van der Tol C, Zhang Y G and Guanter L. 2019. Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations. Remote Sensing of Environment, 225: 441-457 [DOI: 10.1016/jrse2019.03.002http://dx.doi.org/10.1016/jrse2019.03.002]
Xia G S, Bai X, Ding J, Zhu Z, Belongie S, Luo J B, Datcu M, Pelillo M and Zhang L P. 2018. DOTA: a large-scale dataset for object detection in aerial images//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3974-3983 [DOI: 10.1109/CVPR.2018.00418http://dx.doi.org/10.1109/CVPR.2018.00418]
Xiao A R, Wang Z Y, Wang L and Ren Y X. 2018. Super-resolution for “Jilin-1”satellite video imagery via a convolutional network. Sensors, 18(4): 1194 [DOI: 10.3390/s18041194http://dx.doi.org/10.3390/s18041194]
Xiao C J, Li Y, Zhang H Q and Chen J. 2020. Semantic segmentation of remote sensing image based on deep fusion networks and conditional random field. Journal of Remote Sensing, 24(3): 254-264
肖春姣, 李宇, 张洪群, 陈俊. 2020. 深度融合网结合条件随机场的遥感图像语义分割. 遥感学报, 24(3): 254-264 [DOI: 10.11834/jrs.20208298http://dx.doi.org/10.11834/jrs.20208298]
Xiao L, Liu P F and Li H. 2020. Progress and challenges in the fusion of multisource spatial-spectral remote sensing images. Journal of Image and Graphics, 25(5): 851-863
肖亮, 刘鹏飞, 李恒. 2020. 多源空-谱遥感图像融合方法进展与挑战. 中国图象图形学报, 25(5): 851-863 [DOI: 10.11834/jig.190620http://dx.doi.org/10.11834/jig.190620]
Xu G H, Liu Q H, Chen L F and Liu L Y. 2016. Remote sensing for China's sustainable development: opportunities and challenges. Journal of Remote Sensing, 20(5): 679-688
徐冠华, 柳钦火, 陈良富, 刘良云. 2016. 遥感与中国可持续发展: 机遇和挑战. 遥感学报, 20(5): 679-688 [DOI: 10.11834/jrs.20166308http://dx.doi.org/10.11834/jrs.20166308]
Xu W, Gong J Y and Wang M. 2014. Development, application, and prospects for Chinese land observation satellites. Geo-Spatial Information Science, 17(2): 102-109 [DOI: 10.1080/10095020.2014.917454http://dx.doi.org/10.1080/10095020.2014.917454]
Xu Y M, Ho H C, Wong M S, Deng C B, Shi Y, Chan T C and Knudby A. 2018. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environmental Pollution, 242: 1417-1426 [DOI: 10.10161epol201808029http://dx.doi.org/10.10161epol201808029]
Xuan S Y, Li S Y, Han M F, Wan X and Xia G S. 2020. Object tracking in satellite videos by improved correlation filters with motion estimations. IEEE Transactions on Geoscience and Remote Sensing, 58(2): 1074-1086 [DOI: 10.1109/TGRS.2019.2943366http://dx.doi.org/10.1109/TGRS.2019.2943366]
Yang H and Hang J. 2014. Diagnosis of oil spills in Shanghai coastal area based on multi-source satellite MODIS and HJ-1. Marine Sciences, 38(10): 90-97
杨红, 杭君. 2014. 基于MODIS与HJ-1多源卫星的上海海域溢油事故诊断. 海洋科学, 38(10): 90-97 [DOI: 10.11759/hykx20131104002http://dx.doi.org/10.11759/hykx20131104002]
Yao X W, Han J W, Cheng G, Qian X M and Guo L. 2016. Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Transactions on Geoscience and Remote Sensing, 54(6): 3660-3671 [DOI: 10.1109/TGRS.2016.2523563http://dx.doi.org/10.1109/TGRS.2016.2523563]
Ye Z, Kang J, Yao J, Song W P, Liu S C, Luo X, Xu Y S and Tong X H. 2020. Robust fine registration of multisensor remote sensing images based on enhanced subpixel phase correlation. Sensors, 20(15): 4338 [DOI: 10.3390/s20154338http://dx.doi.org/10.3390/s20154338]
Yin L Z, Zhu J, Li Y, Zeng C, Zhu Q, Qi H, Liu M W, Li W L, Cao Z Y, Yang W J and Zhang P C. 2017. A virtual geographic environment for debris flow risk analysis in residential areas. ISPRS International Journal of Geo-Information, 6(11): 377 [DOI: 10.3390/ijgi6110377http://dx.doi.org/10.3390/ijgi6110377]
Yuan Q Q, Shen H F, Li T W, Li Z W, Li S W, Jiang Y, Xu H Z, Tan W W, Yang Q Q, Wang J W, Gao J H and Zhang L P. 2020. Deep learning in environmental remote sensing: achievements and challenges. Remote Sensing of Environment, 241: 111716 [DOI: 10.1016/j.rse.2020.111716http://dx.doi.org/10.1016/j.rse.2020.111716]
Zang N, Cao Y, Wang Y B, Huang B, Zhang L Q and Mathiopoulos P T. 2021. Land-use mapping for high-spatial resolution remote sensing image via deep learning: a review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 5372-5391 [DOI: 10.1109/JSTARS.2021.3078631http://dx.doi.org/10.1109/JSTARS.2021.3078631]
Zhang B, Chen Z C, Peng D L, Benediktsson J A, Liu B, Zou L, Li J and Plaza A. 2019a. Remotely sensed big data: evolution in model development for information extraction [point of view]. Proceedings of the IEEE, 107(12): 2294-2301 [DOI: 10.1109/JPROC.2019.2948454http://dx.doi.org/10.1109/JPROC.2019.2948454]
Zhang B, Zhu J and Su H. 2020. Toward the third generation of artificial intelligence. Science in China (Information Sciences), 50(9): 1281-1302
张钹, 朱军, 苏航. 2020. 迈向第三代人工智能. 中国科学(信息科学), 50(9): 1281-1302 [DOI: 10.1360/SSI-2020-0204http://dx.doi.org/10.1360/SSI-2020-0204]
Zhang B. 2018. Remotely sensed big data era and intelligent information extraction. Geomatics and Information Science of Wuhan University, 43(12): 1861-1871
张兵. 2018. 遥感大数据时代与智能信息提取. 武汉大学学报(信息科学版), 43(12): 1861-1871 [DOI: 10.13203/j.whugis20180172http://dx.doi.org/10.13203/j.whugis20180172]
Zhang C, Sargent I, Pan X, Li H P, Gardiner A, Hare J and Atkinson P M. 2019b. Joint Deep Learning for land cover and land use classification. Remote Sensing of Environment, 221: 173-187 [DOI: 10.1016/J.RSE.2018.11.014http://dx.doi.org/10.1016/J.RSE.2018.11.014]
Zhang H Q, Liu X Y, Yang S and Li Y. 2017. Retrieval of remote sensing images based on semisupervised deep learning. Journal of Remote Sensing, 21(3): 406-414
张洪群, 刘雪莹, 杨森, 李宇. 2017. 深度学习的半监督遥感图像检索. 遥感学报, 21(3): 406-414 [DOI: 10.11834/irs.201761051http://dx.doi.org/10.11834/irs.201761051]
Zhang J X, Li H T, Gu H Y, Zhang H, Yang Y, Tan X R, Li M and Shen J. 2021. Study on man-machine collaborative intelligent extraction for natural resource features. Acta Geodaetica et Cartographica Sinica, 50(8): 1023-1032
张继贤, 李海涛, 顾海燕, 张鹤, 杨懿, 谭相瑞, 李淼, 沈晶. 2021. 人机协同的自然资源要素智能提取方法. 测绘学报, 50(8): 1023-1032 [DOI: 10.11947/j.AGCS.2021.20210102http://dx.doi.org/10.11947/j.AGCS.2021.20210102]
Zhang N, Yang G J, Zhao C J, Zhang J C, Yang X D, Pan Y C, Huang W J, Xu B, Li M, Zhu X C and Li Z H. 2021. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests. National Remote Sensing Bulletin, 25(1): 403-422
张凝, 杨贵军, 赵春江, 张竞成, 杨小冬, 潘瑜春, 黄文江, 徐波, 李明, 朱西存, 李振海. 2021. 作物病虫害高光谱遥感进展与展望. 遥感学报, 25(1): 403-422 [DOI: 10.11834/jrs.20210196http://dx.doi.org/10.11834/jrs.20210196]
Zhang T, Xie S, Huang B, Fan J H, Chen J P and Tong L Q. 2021. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data. Remote Sensing for Land and Resources, 33(2): 213-219
张腾, 谢帅, 黄波, 范景辉, 陈建平, 童立强. 2021. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡. 国土资源遥感, 33(2): 213-219 [DOI: 10.6046/gtzyyg.2020206http://dx.doi.org/10.6046/gtzyyg.2020206]
Zhang X C, Li S Y, Zhou Q M and Sun Y. 2021. The rationale and innovative thinking of building Digital Twin City. Science of Surveying and Mapping, 46(3): 147-152, 168
张新长, 李少英, 周启鸣, 孙颖. 2021. 建设数字孪生城市的逻辑与创新思考. 测绘科学, 46(3): 147-152, 168 [DOI: 10.16251/j.cnki.1009-2307.2021.03.022http://dx.doi.org/10.16251/j.cnki.1009-2307.2021.03.022]
Zhang Y S, Wu L, Ren H Z, Deng L C and Zhang P C. 2020. Retrieval of water quality parameters from hyperspectral images using hybrid Bayesian probabilistic neural network. Remote Sensing, 12(10): 1567 [DOI: 10.3390/rs12101567http://dx.doi.org/10.3390/rs12101567]
Zhang Z N and An Y S. 2019. Imagination of ocean application of multi-base cooperative multi-source fusion of sky, ground and sea. Satellite Application, 2: 24-29, 32-33
张拯宁, 安玉拴. 2019. 天空地海多基协同多源融合的海洋应用设想. 卫星应用, 2: 24-29, 32-33 [DOI: 10.3969/j.issn.1674-9030.2019.02.008http://dx.doi.org/10.3969/j.issn.1674-9030.2019.02.008]
Zhao S, Blaabjerg F, Wang H. 2021. An Overview of Artificial Intelligence Applications for Power Electronics. IEEE Transactions on Power Electronics, 36(4): 4633-4658 [DOI:10.1109/TPEL.2020.3024914http://dx.doi.org/10.1109/TPEL.2020.3024914]
Zhao W B. 2019. Phase research and practice of upgrading earth observation from test application to system effectiveness in China. Journal of Remote Sensing, 23(6): 1036-1045
赵文波. 2019. “中国高分”科技重大专项在对地观测发展历程中的阶段研究. 遥感学报, 23(6): 1036-1045 [DOI: 10.11834/jrs.20199162http://dx.doi.org/10.11834/jrs.20199162]
Zhao W D, Li S S, Li A, Zhang B and Chen J. 2021. Deep fusion of hyperspectral images and multi-source remote sensing data for classification with convolutional neural network. National Remote Sensing Bulletin, 25(7): 1489-1502
赵伍迪, 李山山, 李安, 张兵, 陈俊. 2021. 结合深度学习的高光谱与多源遥感数据融合分类. 遥感学报, 25(7): 1489-1502 [DOI: 10.11834/jrs.20219117http://dx.doi.org/10.11834/jrs.20219117]
Zhao X Y,Tian B,Niu Y,Chen C P and Zhou Y X. 2022. Classification of coastal salt marsh based on Sentinel-1 time series backscattering characteristics: The case of the Yangtze River delta. National Remote Sensing Bulletin, 26(4):672-682
赵欣怡,田波,牛莹,陈春鹏,周云轩.2022.Sentinel-1时序后向散射特征的海岸带盐沼植被分类——以长江口为例.遥感学报,26(4): 672-682 [DOI:10.11834/jrs.20229303http://dx.doi.org/10.11834/jrs.20229303]
Zheng X T, Guan S P, Ren H G, Xu R L and Xiang B. 2021. Application of using knowledge graph to explore the knowledge pedigree of the environmental researches in Northeast land. Journal of Geo-Information Science, 23(6): 1002-1016
郑翔天, 关思萍, 任红鸽, 徐容乐, 项波. 2021. 知识图谱在构建东北土地环境研究知识谱系中的应用. 地球信息科学学报, 23(6): 1002-1016 [DOI: 10.12082/dqxxkx.2021.200431http://dx.doi.org/10.12082/dqxxkx.2021.200431]
Zheng Z G, Fu K, Xu C Y, Wu Z Y and Zhou C F. 2019. Remote sensing data user request merging technology. Journal of National University of Defense Technology, 41(2): 115-123
郑忠刚, 付琨, 徐崇彦, 巫震宇, 周长飞. 2019. 遥感数据用户需求融合处理技术. 国防科技大学学报, 41(2): 115-123 [DOI: 10.11887/j.cn.201902017http://dx.doi.org/10.11887/j.cn.201902017]
Zheng Z, Wang J F, Zou B, Gao Y H, Yang S Q and Wang Y Q. 2021. Initial assessment of burn severity using transfer learning model. Journal of Remote Sensing, 0
郑忠, 王金凤, 邹滨, 高阳华,杨世琦,王永前. 2021. 应用迁移学习的林火烈度初始评估研究. 遥感学报, 0 [DOI: 10.11834/jrs.20210156http://dx.doi.org/10.11834/jrs.20210156]
Zhou K and Cao L. 2021. The status and prospects of remote sensing applications in precision silviculture. National Remote Sensing Bulletin, 25(1): 423-438
周凯, 曹林. 2021. 遥感在森林精准培育中的应用现状与展望. 遥感学报, 25(1): 423-438 [DOI: 10.11834/jrs.20210506http://dx.doi.org/10.11834/jrs.20210506]
Zhou L, Mu H W, Ma H J and Chen G X. 2019. Remote sensing estimation on yield of winter wheat in North China based on convolutional neural network. Transactions of the Chinese Society of Agricultural Engineering, 35(15): 119-128
周亮, 慕号伟, 马海姣, 陈高星. 2019. 基于卷积神经网络的中国北方冬小麦遥感估产. 农业工程学报, 35(15): 119-128 [DOI: 10.11975/j.issn.1002-6819.2019.15.016http://dx.doi.org/10.11975/j.issn.1002-6819.2019.15.016]
Zhou P C, Cheng G, Yao X W and Han J W. 2021. Machine learning paradigms in high-resolution remote sensing image interpretation. National Remote Sensing Bulletin, 25(1): 182-197
周培诚, 程塨, 姚西文, 韩军伟. 2021. 高分辨率遥感影像解译中的机器学习范式. 遥感学报, 25(1): 182-197 [DOI: 10.11834/jrs.20210164http://dx.doi.org/10.11834/jrs.20210164]
Zhou Z H. 2016. Machine Learning. Beijing: Tsinghua University Press. 10-13
周志华. 2016. 机器学习. 北京: 清华大学出版社. 10-13
Zhu J F, Zhou Y, Wang S X, Wang L T, Liu W L, Li H T and Mei J J. 2019. Analysis of changes of Baiyangdian wetland from 1975 to 2018 based on remote sensing. Journal of Remote Sensing, 23(5): 971-986
朱金峰, 周艺, 王世新, 王丽涛, 刘文亮, 李海涛, 梅军军. 2019. 1975年—2018年白洋淀湿地变化分析. 遥感学报, 23(5): 971-986 [DOI: 10.11834/jrs.20198379http://dx.doi.org/10.11834/jrs.20198379]
Zhu J Z, Shi Q, Chen F E, Shi X D, Dong Z M and Qin Q Q. 2016. Research status and development trends of remote sensing big data. Journal of Image and Graphics, 21(11): 1425-1439
朱建章, 石强, 陈凤娥, 史晓丹, 董泽民, 秦前清. 2016. 遥感大数据研究现状与发展趋势. 中国图象图形学报, 21(11): 1425-1439 [DOI: 10.11834/jig.20161102http://dx.doi.org/10.11834/jig.20161102]
Zou T Y, Ding H P, Wang W Z and Xiao Q. 2019. Discussion on artificial intelligence application of space-based remote sensing big data. Satellite Application, (6): 38-44
邹同元, 丁火平, 王玮哲, 肖倩. 2019. 天基遥感大数据人工智能应用探讨. 卫星应用, (6): 38-44 [DOI: 10.3969/j.issn.1674-9030.2019.06.012http://dx.doi.org/10.3969/j.issn.1674-9030.2019.06.012]
相关作者
相关机构