被动微波遥感反演雪深与气象站观测雪深时空对比
Spatio-temporal comparison of snow depth between passive microwave remote sensing inversion data and meteorological station observation data
- 2023年27卷第9期 页码:2060-2071
DOI: 10.11834/jrs.20221653
扫 描 看 全 文
扫 描 看 全 文
王静, 车涛, 戴礼云, 等. 被动微波遥感反演雪深与气象站观测雪深时空对比[J]. 遥感学报, 2023,27(9):2060-2071.
WANG Jing, CHE Tao, DAI Liyun, et al. Spatio-temporal comparison of snow depth between passive microwave remote sensing inversion data and meteorological station observation data[J]. National Remote Sensing Bulletin, 2023,27(9):2060-2071.
雪深是积雪重要的物理属性之一,准确的获取雪深对积雪水文与水资源、气候变化、雪灾等研究至关重要。目前,广泛用于长时间序列雪深研究的是气象站观测雪深数据和被动微波遥感(如SMMR、SSM/I和SSMI/S)反演雪深数据。本文对这两种数据的雪深最大值和平均值在中国地区的空间分布、年际变化进行对比,分析两种数据的分布特征。结果表明:空间上,站点观测雪深与站点对应遥感像元雪深在东北地区相关性最好,新疆地区次之,青藏高原地区相关性较差。两种雪深在稳定积雪区分布较为一致,在大于40 cm的深雪区和雪深小于5 cm的南方地区站点观测雪深的最大值明显高于遥感反演雪深的最大值。时间上,相比于1980年—2019年这一时间段,1989年—2019年站点雪深与遥感雪深在各典型积雪区的相关性明显提高。进而对比近30 a中国地区两种雪深的变化,结果显示两种数据在青藏高原东南部雪深有一致的显著(,p,<,0.05)减少趋势,在东北平原地区雪深有一致的显著(,p,<,0.05)增加趋势。分布在青藏高原地区的气象站大多选址在海拔较低的地方,不能很好的反映对应微波遥感像元中高海拔地区及山区内雪深的平均分布和变化情况,而被动微波遥感雪深反演受积雪特性变化的影响,对短时间内雪深变化较大的极端降雪事件不敏感。
Snow depth is one of the most important physical properties of snow, and the accurate estimation of snow depth is critical to human production and life, such as water resource management, climate change research, disaster early warning, and management. At present, snow depth data observed by meteorological stations and retrieved by passive microwave remote sensing (SMMR, SSM/I, and SSMI/S) have been widely used for long time series snow depth research. To clarify the advantages and disadvantages of these data in the study of snow depth change, this paper compares the spatial distribution and interannual variation of the maximum snow depth and mean snow depth of these in China. Results show the distribution of the two types of snow depth is consistent in the stable snow cover areas, but the maximum snow depth observed by metrological stations is remarkably greater than the maximum retrieved by remote sensing in the deep snow area of more than 40 cm and the snow depth of less than 5 cm in southern China. The correlation between the two snow depth data is the best in northeast China, the second in Xinjiang, and the worst in the Qinghai-Tibet Plateau. Using the passive microwave snow depth data after 1988 is more suitable to study the snow depth changes in China because the SMMR sensor (1978.10.26—1987.8.20) has low time resolution and serious data loss in the middle and low latitudes, resulting in poor quality of the corresponding snow depth data. Furthermore, comparing the changes of the two types of snow depth in China in recent 30 years, the results show the changes of those are the same in different regions, with a substantial increase in the northeast Plain and a considerable decrease in the western and southeastern parts of the Qinghai–Tibet Plateau. Meteorological stations, influenced by their site selection, cannot reflect the high-altitude snow depth and mountain district time distribution and the change of situation. However, the snow depth retrieved by passive microwave remote sensing is affected by snow thickness, seasonal variation of snow density, liquid-water content of snowpacks, snow grain size, and other factors. Therefore, it cannot reflect the extreme snowfall events with rapid changes of snow attribute in a short time.
雪深气象站点被动微波遥感典型积雪区对比分析
snow depthmeteorological stationspassive microwave remote sensingtypical snow areascomparative analysis
Brown R D and Goodison B E. 1996. Interannual variability in reconstructed Canadian snow cover, 1915-1992. Journal of Climate, 9(6): 1299-1318 [DOI: 10.1175/1520-0442(1996)009<1299:IVIRCS>2.0.CO;2http://dx.doi.org/10.1175/1520-0442(1996)009<1299:IVIRCS>2.0.CO;2]
Chang A T C, Foster J L and Hall D K. 1987. Nimbus-7 SMMR derived global snow cover parameters. Annals of Glaciology, 9: 39-44 [DOI: 10.1017/S0260305500000355http://dx.doi.org/10.1017/S0260305500000355]
Chang A T C, Foster J L, Kelly R E J, Josberger E G, Armstrong R L and Mognard N M. 2005. Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the northern great plains. Journal of Hydrometeorology, 6(1): 20-33 [DOI: 10.1175/JHM-405.1http://dx.doi.org/10.1175/JHM-405.1]
Chang T C, Gloersen P, Schmugge T, Wilheit T T and Zwally H J. 1976. Microwave emission from snow and glacier ice. Journal of Glaciology, 16(74): 23-39 [DOI: 10.1017/S0022143000031415http://dx.doi.org/10.1017/S0022143000031415]
Che T. 2006. Study on Passive Microwave Remote Sensing of Snow and Snow Data Assimilation Method. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences
车涛. 2006. 积雪被动微波遥感反演与积雪数据同化方法研究. 兰州: 中国科学院寒区旱区环境与工程研究所
Che T and Li X. 2005. Spatial distribution and temporal variation of snow water resources in China during 1993-2002. Journal of Glaciology and Geocryology, 27(1): 64-67
车涛, 李新. 2005. 1993年—2002年中国积雪水资源时空分布与变化特征. 冰川冻土, 27(1): 64-67 [DOI: 10.3969/j.issn.1000-0240.2005.01.009http://dx.doi.org/10.3969/j.issn.1000-0240.2005.01.009]
Chu D, Da Z and Laba Z M. 2017. Spatio-temporal distribution patterns of snow cover on the Tibet and orographic impacts. Journal of Geo-Information Science, 19(5): 635-645
除多, 达珍, 拉巴卓玛. 2017. 西藏高原积雪覆盖空间分布及地形影响. 地球信息科学学报, 19(5): 635-645 [DOI: 10.3724/SP.J.1047.2017.00635http://dx.doi.org/10.3724/SP.J.1047.2017.00635]
Dai L Y and Che T. 2010. The spatio-temporal distribution of snow density and its influence factors from 1999 to 2008 in China. Journal of Glaciology and Geocryology, 32(5): 861-866
戴礼云, 车涛. 2010. 1999年—2008年中国地区雪密度的时空分布及其影响特征. 冰川冻土, 32(5): 861-866
Dai L Y, Che T and Ding Y J. 2015. Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China. Remote Sensing, 7(6): 7212-7230 [DOI: 10.3390/rs70607212http://dx.doi.org/10.3390/rs70607212]
Dai S P, Zhang B, Cheng F, Wang H J and Wang P. 2010. The Spatio-temporal variations of snow cover in China from the snow depth time series dataset based on passive microwave remote sensing. Journal of Glaciology and Geocryology, 32(6): 1066-1073
戴声佩, 张勃, 程峰, 王海军, 王鹏. 2010. 基于被动微波遥感反演雪深的时间序列分析我国积雪时空变化特征. 冰川冻土, 32(6): 1066-1073
Hall D K, Riggs G A, Salomonson V V, Digirolamo N E and Bayr K J. 2002. MODIS snow-cover products. Remote Sensing of Environment, 83(1/2): 181-194 [DOI: 10.1016/S0034-4257(02)00095-0http://dx.doi.org/10.1016/S0034-4257(02)00095-0]
Kunkel K E, Palecki M A, Hubbard K G, Robinson D A, Redmond K T and Easterling D R. 2007. Trend identification in twentieth-century U.S. snowfall: the challenges. Journal of Atmospheric and Oceanic Technology, 24(1): 64-73 [DOI: 10.1175/JTECH2017.1http://dx.doi.org/10.1175/JTECH2017.1]
Kuraś P K, Weiler M and Alila Y. 2008. The spatiotemporal variability of runoff generation and groundwater dynamics in a snow-dominated catchment. Journal of Hydrology, 352(1/2): 50-66 [DOI: 10.1016/j.jhydrol.2007.12.021http://dx.doi.org/10.1016/j.jhydrol.2007.12.021]
Li H X, Zhong X Y, Zheng L, Hao X H, Wang J and Zhang J. 2022. Classification of snow cover persistence across China. Water, 14, 933 [DOI: 10.3390/w14060933http://dx.doi.org/10.3390/w14060933]
Li P J. 1987. Seasonal snow resources and its fluctuation in China. Chinese Science Bulletin, 32(17): 1329-1332
李培基. 1987. 中国季节积雪资源及其波动. 科学通报, 32(17): 1329-1332
Li P J. 1990. A Preliminary study of snow mass variations over past 30 years in China. Acta Meteorologica Sinica, 48(4): 433-437
李培基. 1990. 近30年来我国雪量变化的初步探讨. 气象学报, 48(4): 433-437
Li P J and Mi D S. 1983. Distribution of snow cover in China. Journal of Glaciology and Cryopedology, 5(4): 9-18
李培基, 米德生. 1983. 中国积雪的分布. 冰川冻土, 5(4): 9-18
Li X. 2014. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Science China: Earth Sciences, 57(1): 80-87
李新. 2013. 陆地表层系统模拟和观测的不确定性及其控制. 中国科学: 地球科学, 43(11): 1735-1742
Li X and Che T. 2007. A review on passive microwave remote sensing of snow cover. Journal of Glaciology and Geocryology, 29(3): 487-496
李新, 车涛. 2007. 积雪被动微波遥感研究进展. 冰川冻土, 29(3): 487-496 [DOI: 10.3969/j.issn.1000-0240.2007.03.023http://dx.doi.org/10.3969/j.issn.1000-0240.2007.03.023]
Ma L J and Qin D H. 2012. Spatial-Temporal characteristics of observed key parameters for snow cover in China during 1957-2009. Journal of Glaciology and Geocryology, 34(1): 1-11
马丽娟, 秦大河. 2012. 1957年—2009年中国台站观测的关键积雪参数时空变化特征. 冰川冻土, 34(1): 1-11
Ma L J, Qin D H, Bian L G, Xiao C D and Luo Y. 2010. Analysis of air temperature sensitivity of snow cover days on the Qinghai-Tibetan Plateau. Advances in Climate Change Research, 6(1): 1-7
马丽娟, 秦大河, 卞林根, 效存德, 罗勇. 2010. 青藏高原积雪日数的气温敏感度分析. 气候变化研究进展, 6(1): 1-7 [DOI: 10.3969/j.issn.1673-1719.2010.01.001http://dx.doi.org/10.3969/j.issn.1673-1719.2010.01.001]
Mankin J S, Viviroli D, Singh D, Hoekstra A Y and Diffenbaugh N S. 2015. The potential for snow to supply human water demand in the present and future. Environmental Research Letters, 10(11): 114016 [DOI: 10.1088/1748-9326/10/11/114016http://dx.doi.org/10.1088/1748-9326/10/11/114016]
Matzler C, Schanda E and Good W. 1982. Towards the definition of optimum sensor specifications for microwave remote sensing of snow. IEEE Transactions on Geoscience and Remote Sensing, GE-20(1): 57-66 [DOI: 10.1109/TGRS.1982.4307521http://dx.doi.org/10.1109/TGRS.1982.4307521]
Qiao D J, Wang N Q, Li Z, Zhou J M and Fu X Y. 2018. Spatio-temporal changes of snow phenology in the Qinghai-Tibetan Plateau during the hydrological year of 1980-2009. Climate Change Research, 14(2): 137-143
乔德京, 王念秦, 李震, 周建民, 符喜优. 2018. 1980年—2009年水文年青藏高原积雪物候时空变化遥感分析. 气候变化研究进展, 14(2): 137-143 [DOI: 10.12006/j.issn.1673-1719.2017.088http://dx.doi.org/10.12006/j.issn.1673-1719.2017.088]
Tan Q Y, Cheng L, Xu Z X, Zhao Y J, Liu J T and Liu X W. 2021. Spatiotemporal distribution of snow cover depth and its driving factors in the Yarlung Zangbo River basin, 1979-2017. Journal of Glaciology and Geocryology, 43(4): 1049-1059
谭秋阳, 程磊, 徐宗学, 赵彦军, 刘江涛, 刘晓婉. 2021. 1979年—2017年雅鲁藏布江流域雪深时空分布特征及其影响因素分析. 冰川冻土, 43(4): 1049-1059 [DOI: 10.7522/j.issn.1000-0240.2021.0070http://dx.doi.org/10.7522/j.issn.1000-0240.2021.0070]
Tian L Q, Li W Z, Zhang Y, Tian L J, Zhu Q A, Peng C H and Chen H. 2014. The analysis of snow information from 1979 to 2007 in Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 34(20): 5974-5983
田柳茜, 李卫忠, 张尧, 田立军, 朱求安, 彭长辉, 陈槐. 2014. 青藏高原1979年—2007年间的积雪变化. 生态学报, 34(20): 5974-5983 [DOI: 10.5846/stxb201303070365http://dx.doi.org/10.5846/stxb201303070365]
Trujillo E, Ramírez J A and Elder K J. 2009. Scaling properties and spatial organization of snow depth fields in sub-alpine forest and alpine tundra. Hydrological Processes, 23(11): 1575-1590 [DOI: 10.1002/hyp.7270http://dx.doi.org/10.1002/hyp.7270]
Wang J, Li H X, Hao X H, Huang X D, Hou J L, Che T, Dai L Y, Liang T G, Huang C L, Li H Y, Tang Z G and Wang Z Y. 2014. Remote sensing for snow hydrology in China: challenges and perspectives. Journal of Applied Remote Sensing, 8(1): 084687 [DOI: 10.1117/1.JRS.8.084687http://dx.doi.org/10.1117/1.JRS.8.084687]
Wu Y, Zhang J H, Xu H M and He J H. 2007. Advances in study of snow-cover from remote sensing data. Meteorological Monthly, 33(6): 3-10
吴杨, 张佳华, 徐海明, 何金海. 2007. 卫星反演积雪信息的研究进展. 气象, 33(6): 3-10 [DOI: 10.3969/j.issn.1000-0526.2007.06.001http://dx.doi.org/10.3969/j.issn.1000-0526.2007.06.001]
Xu B D, Li J, Liu Q H, Xin X Z, Zeng Y L and Yin G F. 2015. Review of methods for evaluating representativeness of ground station observations. Journal of Remote Sensing, 19(5): 703-718
徐保东, 李静, 柳钦火, 辛晓洲, 曾也鲁, 尹高飞. 2015. 地面站点观测数据代表性评价方法研究进展. 遥感学报, 19(5): 703-718 [DOI: 10.11834/jrs.20154178http://dx.doi.org/10.11834/jrs.20154178]
Yang D Q and Woo M K. 1999. Representativeness of local snow data for large scale hydrologic investigations. Hydrological Processes, 13(12/13): 1977-1988 [DOI: 10.1002/(SICI)1099-1085(199909)13:12/13<1977::AID-HYP894>3.0.CO;2-Bhttp://dx.doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1977::AID-HYP894>3.0.CO;2-B]
Zhang T J and Zhong X Y. 2014. Classification and regionalization of the seasonal snow cover across the Eurasian Continent. Journal of Glaciology and Geocryology, 36(3): 481-490
张廷军, 钟歆玥. 2014. 欧亚大陆积雪分布及其类型划分. 冰川冻土, 36(3): 481-490 [DOI: 10.75222/j.issn.1000-0240.2014.0058http://dx.doi.org/10.75222/j.issn.1000-0240.2014.0058]
相关作者
相关机构