基于典型相关分析的遥感影像非监督超像素级变化检测
Unsupervised super pixel level change detection based on canonical correlation analysis
- 2022年 页码:1-15
DOI: 10.11834/jrs.20221674
引用
扫 描 看 全 文
扫 描 看 全 文
引用
赵元昊,孙根云,张爱竹,矫志军,孙超.XXXX.基于典型相关分析的遥感影像非监督超像素级变化检测.遥感学报,XX(XX): 1-15
ZHAO Yuanhao,SUN Genyun,ZHANG Aizhu,JIAO Zhijun,SUN Chao. XXXX. Unsupervised super pixel level change detection based on canonical correlation analysis. National Remote Sensing Bulletin, XX(XX):1-15
变化检测是指利用多时相影像检测地表覆盖类型发生变化的区域,目前的检测方法易受噪声以及特殊地物等影响,检测结果斑点现象严重、检测精度低。针对以上问题,本文结合典型相关分析和直方图规定化提出一种非监督的超像素级变化检测方法。首先,对两个时刻的遥感影像进行预处理以及超像素分割;其次,基于超像素尺度和未发生变化的概率计算每个超像素的权重;然后,基于超像素级多元变化检测和直方图规定化获取变化特征;最后,基于权重影像、经典方法与变化特征进行决策融合,得到变化检测结果图。本文在三个高光谱测试数据集和一个多光谱测试数据集上进行实验验证。结果表明,本文方法在四个测试数据集上的OA和Kappa指标均为最优,且OA都达到了90%以上。在四个数据集上,本文方法的OA相比于其他方法中的最高精度提高了4.41%、3.44%、1.74%和0.19%。
Change detection is the process of detecting the changed surface cover using the multi-phase characteristics. The current detection method is easy to be affected by noise and special objects, which makes the detection result of spot phenomenon serious and the detection accuracy low. To solve this problem, this paper proposes an unsupervised super pixel level change detection method based on canonical correlation analysis and histogram specification. Firstly, the remote sensing images at two times are preprocessed and super-pixel segmented; Secondly, the weight of each super-pixel is calculated based on the super-pixel scale and the unchanged probability; Then, the change features are obtained based on super-pixel multivariate change detection and histogram specification; Finally, based on the weighted image, classical methods and change features, the change detection result map is obtained.In this paper, three hyperspectral test data sets and one multispectral test data set are used for experimental verification. The results show that the OA and Kappa indexes of our method on four test datasets are the best, and the OA of four test datasets all above 90%. On the four data sets, the OA of our method is improved by 4.41%, 3.44%, 1.74% and 0.19% compared with other methods.
超像素变化检测典型相关分析直方图规定化
super pixelchange detectioncanonical correlation analysishistogram specification
Bovolo F. 2009. A multilevel parcel-based approach to change detectionin very high resolution multitemporal images. IEEE Geoscience and Remote Sensing Letters,6 ( 1 ) : 33-37 [DOI: 10.1109 / LGhttp://dx.doi.org/10.1109/LGRS.2008.2007429]
Bruzzone L and Carlin L. 2006. A multilevel context-based system for classification of very high spatial resolution images. IEEE Transactions on Geoscience and Remote sensing, 44 (9) : 2587-2600[DOI: 10.1109 /TGRS.2006.875360http://dx.doi.org/10.1109/TGRS.2006.875360]
Bruzzone L and Prieto D F. 2000. Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience & Remote Sensing, 38(3):1171-1182 [DOI: 10.1109/36.843009http://dx.doi.org/10.1109/36.843009]
Wu C, Du B and Zhang L. 2014. Slow feature analysis for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2858–2874 [DOI: 10.1109/TGRS.2013.2266673http://dx.doi.org/10.1109/TGRS.2013.2266673]
Cai Z S, Xiang Z J, Cai H and Shan D M. 2020. Change detection of CVA multi-scale remote sensing image combined with feature selection. Surveying and mapping bulletin, 521(08): 104-107 + 133
蔡怤晟、向泽君、蔡衡、单德明. 2020. 结合特征选择的CVA多尺度遥感影像变化检测. 测绘通报, 521(08):104-107+133. [DOI: CNKI:SUN:CHTB.0.2020-08-020http://dx.doi.org/CNKI:SUN:CHTB.0.2020-08-020]
Canty M J, Nielsen A A and Schmidt M. 2003. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment, 91(3):441-451 [DOI: 10.1016/j.rse.2003.10.024http://dx.doi.org/10.1016/j.rse.2003.10.024]
Carvalho J O A, Guimar R F, Gillespie A R, Silva N C and Gomes R A T. 2011. A new approach to change vector analysis using distance and similarity measures. Remote Sensing, 3(11): 2473-2493 [DOI: 10.3390/rs3112473http://dx.doi.org/10.3390/rs3112473]
Du B, Ru L, Wu C and Zhang L. 2019. Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57(12): 9976-9992 [DOI: 10.1109/TGRS.2019.2930682http://dx.doi.org/10.1109/TGRS.2019.2930682]
Huang L, Yu X Q, Yao B X and Yang Z N. 2019. Remote sensing image change detection based on linear iterative clustering and principal component analysis. Surveying and Mapping Science, 44 (11): 189-194
黄亮,於雪琴,姚丙秀,杨泽楠. 2019.线性迭代聚类和主成分分析的遥感影像变化检测. 测绘科学, 44(11):189-194. [DOI: 10.16251/j.cnki.1009-2307.2019.11.028http://dx.doi.org/10.16251/j.cnki.1009-2307.2019.11.028]
Hu H T and Ban Y F. 2014. Unsupervised change detection in multi‐temporal SAR images over large urban areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8): 3248-3261 [DOI: 10.1109/JSTARS.2014.2344017http://dx.doi.org/10.1109/JSTARS.2014.2344017]
Han Y, Javed A, Jung S and Liu S. 2020. Object-based change detection of very high resolution images by fusing pixel-based change detection results using weighted dempster–Shafer Theory. Remote Sensing, 12(6):983 [DOI: 10.3390/rs12060983http://dx.doi.org/10.3390/rs12060983]
Liao M S, Zhu P and Gong J Y. 2000. Multivariate change detection based on canonical correlation analysis. Journal of Remote Sensing, 4(3): 197-201
廖明生, 朱攀, 龚健雅.2000. 基于典型相关分析的多元变化检测. 遥感学报, 4(3): 197-201.[DOI: 10.11834/jrs. 20000307http://dx.doi.org/10.11834/jrs.20000307]
Wiskott L and Sejnowski T J. 2002. Slow feature analysis: Unsupervised learning of invariances. Neural computation, 14(4): 715– 770 [DOI: 10.1162/089976602317318938http://dx.doi.org/10.1162/089976602317318938]
Wiskott L, Berkes P, Franzius M, Sprekeler H and Wilbert N. 2013. Slow feature analysis. The Journal of Machine Learning Research, 14(1): 3683-3719 [DOI: 10.4249/scholarpedia.5282http://dx.doi.org/10.4249/scholarpedia.5282]
Li L, Wang L, Sun X P and Ying G W. 2017. Remote sensing image change detection based on object-oriented change vector analysis. Remote sensing information, 32 (6): 7
李亮, 王蕾, 孙晓鹏, 应国伟. 2017. 面向对象变化向量分析的遥感影像变化检测. 遥感信息, 32(6): 7[DOI: 10.3969/j.issn.1000-3177.2017.06.012http://dx.doi.org/10.3969/j.issn.1000-3177.2017.06.012]
Li Q L. 2018. Super pixel level image change detection based on deep learning. Xian: Xidian University: 10-12
李泉霖. 2018.基于深度学习的超像素级别的图像变化检测.西安:西安电子科技大学: 10-12 [DOI: CNKI:CDMD:2.1019.017910http://dx.doi.org/CNKI:CDMD:2.1019.017910]
Liu B Q, Zhao Z, Sheng Y T and Zhang Z F. 2018. High Resolution SAR image change detection using texture fusion and generalized gaussian model. Surveying and mapping engineering, 27(06): 19-25
刘本强,赵争,盛玉婷,张忠芳.2018.利用纹理融合与广义高斯模型的高分辨率SAR影像变化检测.测绘工程,27(06):19-25 [DOI:10.19349/j.cnki.issn1006-7949.2018.06.005http://dx.doi.org/10.19349/j.cnki.issn1006-7949.2018.06.005.]
Liu J H. 2015. Improved hybrid dual domain image denoising and SAR image change detection based on fused difference map and edge classification. Xian: Xian University of Electronic Science and technology: 37-50
刘金华. 2015.改进的混合双域图像去噪和基于融合差异图及边缘分类的SAR图像变化检测.西安: 西安电子科技大学:37-50 [10.7666/d.D01066829]
Lu D, Mausel P, Brondízio E and Moran E. 2004. Change detection techniques. International Journal of Remote Sensing, 25(12): 2365-2401 [DOI: 10.1080/0143116031000139863http://dx.doi.org/10.1080/0143116031000139863]
Lu J, Jonathan L, Chen G, Zhao L J, Xiong B L and Gao Y G. 2015. Improving pixel-based change detection accuracy using an object-based approach in multitemporal SAR flood images. Selected Topics in Applied Earth Observations and Remote Sensing, 8(7):3486-3496 [DOI: 10.1109/JSTARS.2015.2416635http://dx.doi.org/10.1109/JSTARS.2015.2416635]
Lu M, Mei Y, Zhao Y and Leng L. 2015. Change detection method using multi-scale geometric eigenvectors. Geomatics and Information Science of Wuhan University, 40(5): 623-627
陆苗, 梅洋, 赵勇, 冷亮. 2015. 利用多尺度几何特征向量的变化检测方法. 武汉大学学报(信息科学版), 40(5): 623-627 [DOI: 10.13203/j.whugis 2013.03.82http://dx.doi.org/10.13203/j.whugis2013.03.82]
Marchesi S, Bovolo F and Bruzzone L. 2010. A context-sensitive technique robust to registration noise for change detection in VHR multi-spectral images. IEEE Transactions on Image processing, 19(7):1877-1889 [DOI: 10.1109 / TIP.2010.2045070http://dx.doi.org/10.1109/TIP.2010.2045070]
Marpu P R, Gamba P and Canty M J. 2011. Improving Change Detection Results of IRMAD by Eliminating Strong Changes. IEEE Geoscience and Remote Sensing Letters, 8(4): 799-803 [DOI: 10.1109/LGRS.2011.2109697http://dx.doi.org/10.1109/LGRS.2011.2109697]
Marpu P R, Gamba P and Benediktsson J A. 2011. Hyperspectral change detection using IR-MAD and feature reduction. IEEE International Geoscience and Remote Sensing Symposium, 98-101 [DOI: 10.1109/IGARSS.2011.6048907http://dx.doi.org/10.1109/IGARSS.2011.6048907]
Nielsen A A. 2007. The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data. IEEE Transactions on Image processing, 16(2): 463-478 [DOI: 10.1109/ TIP.2006.888195http://dx.doi.org/10.1109/TIP.2006.888195]
Nielsen A A, Conradsen K and Simpson J J. 1998. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, Bitemporal Image Data: New approaches to change detection studies. Remote Sensing of Environment, 64(1):1-19 [DOI: 10.1016/S0034-4257(97)00162-4http://dx.doi.org/10.1016/S0034-4257(97)00162-4]
Ouyang S N. 2019. High resolution remote sensing image cross fusion change detection method based on IR-MAD, Beijing Surveying and Mapping, 33(9): 5
欧阳松南. 2019. 基于IR-MAD的高分辨率遥感影像交叉融合变化检测方法.北京测绘, 33(9): 5 [DOI: CNKI:SUN:BJCH.0.2019-09-009http://dx.doi.org/CNKI:SUN:BJCH.0.2019-09-009]
Sun X X, Zhang J X, Yan Q and Gao J X. 2011. Review and Prospect of remote sensing image change detection methods. Remote sensing information, (1): 119-123
孙晓霞,张继贤,燕琴,高井祥.2011.遥感影像变化检测方法综述及展望.遥感信息,(1):119-123 [DOI: 10.3969/j.issn.1000-3177.2011.01.023http://dx.doi.org/10.3969/j.issn.1000-3177.2011.01.023]
Wang B, Choi S K, Han Y K, Lee S K and Choi J W. 2015. Application of IR-MAD using synthetically fused images for change detection in hyperspectral data. Remote Sensing Letters, 6(7-9), 578-586. [DOI: 10.1080/2150704X.2015.1062155http://dx.doi.org/10.1080/2150704X.2015.1062155]
Wang X L, Yang J P and Jiang T. 2020. Research on remote sensing image change detection method based on IR-MAD algorithm. Geographic Information World, 27 (3): 7
王晓雷,杨景鹏,江涛.2020. IR-MAD算法的遥感影像变化检测方法研究. 地理信息世界, 27(3):7. [DOI: 10.3969/j.issn.1672-1586.2020.03.010http://dx.doi.org/10.3969/j.issn.1672-1586.2020.03.010]
Wang Q, Li Q and Li X. 2020. A Fast Neighborhood Grouping Method for Hyperspectral Band Selection. IEEE Transactions on Geoscience and Remote Sensing, (99):1-12 [DOI: 10.1109/TGRS.2020.3011002http://dx.doi.org/10.1109/TGRS.2020.3011002]
Xu Y D, Yu L, Zhao F R, Cai X L, Zhao J Y, Lu H and Gong P. 2018. Tracking annual cropland changes from 1984 to 2016 using timeseries Landsat images with a change-detection and post-classification approach: Experiments from three sites in Africa. Remote Sensing of Environment, 218: 13-31 [DOI: 10.1016/j. rse. 2018. 09.008http://dx.doi.org/10.1016/j.rse.2018.09.008]
Zhuang H F. 2018. Research on several methods of multispectral / SAR image change detection. China University of Mining and Technology: 13-28
庄会富. 2018. 多光谱/SAR影像变化检测若干方法研究.中国矿业大学: 13-28 [DOI: CNKI:CDMD:1. 1018.826037http://dx.doi.org/CNKI:CDMD:1.1018.826037]
Zeng Z F. 2013. Land use change detection based on change vector analysis method. Chongqing Jiaotong University: 10-12
曾子芳. 2013. 基于变化矢量分析法的遥感影像土地利用变化检测研究. 重庆交通大学: 10-12 [DOI: 10.7666/d.Y2377442http://dx.doi.org/10.7666/d.Y2377442]
Zhang M Z, Zhang H, Wang C, Liu M and Xie L. 2016. Detection method of SAR image change based on super-pixel segmentation and multi-method fusion. Remote sensing technology and application, 31 (03): 481-487
张明哲,张红,王超,刘萌,谢镭. 2016,基于超像素分割和多方法融合的SAR图像变化检测方法.遥感技术与应用, 31(03):481-487. [DOI: 10.11873/j.issn.1004-0323.2016.3.0481http://dx.doi.org/10.11873/j.issn.1004-0323.2016.3.0481]
Zhao M and Zhao Y D. 2018. Object oriented multi feature hierarchical CVA remote sensing image change detection. Journal of remote sensing, 022 (001): 119-131
赵敏, 赵银娣. 2018. 面向对象的多特征分级CVA遥感影像变化检测.遥感学报, 022(001):119-131. [DOI: CNKI:SUN:YGXB.0.2018-01-011http://dx.doi.org/CNKI:SUN:YGXB.0.2018-01-011]
Zhao Z M, Meng Y, Yuan A Z, Huang Q Q, Kong Y L, Yuan Y, Liu X Y, Lin L and Zhang M M. 2016. Research progress of remote sensing time series image change detection. Journal of remote sensing, 20 (5): 1110-1125
赵忠明, 孟瑜, 岳安志, 黄青青, 孔赟珑, 袁媛, 刘晓奕, 林蕾, 张蒙蒙. 2016. 遥感时间序列影像变化检测研究进展. 遥感学报, 20(5): 1110-1125 [DOI: 10.11834/jrs.20166170http://dx.doi.org/10.11834/jrs.20166170]
相关作者
相关机构