典型陆表稳定目标热红外辐射特性分析及适用性评估
Analysis of the thermal infrared radiation characteristics of a typical land surface stable target and applicability assessments
- 2023年27卷第5期 页码:1133-1149
纸质出版日期: 2023-05-07
DOI: 10.11834/jrs.20221791
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-05-07 ,
扫 描 看 全 文
杨治纬,高彩霞,邱实,马灵玲,钱永刚,赵永光.2023.典型陆表稳定目标热红外辐射特性分析及适用性评估.遥感学报,27(5): 1133-1149
Yang Z W,Gao C X,Qiu S,Ma L L,Qian Y G and Zhao Y G. 2023. Analysis of the thermal infrared radiation characteristics of a typical land surface stable target and applicability assessments. National Remote Sensing Bulletin, 27(5):1133-1149
以地面稳定目标为参考的网络化定标技术已经成为国际定标领域的研究热点。它利用多次观测的方式减小独立测量不确定性,不仅可极大提升定标校验频次,还可有效提高总体定标精度。基于此,本文利用长时间序列Aqua/MODIS和Landsat 8/TIRS热红外数据,对国际卫星对地观测委员会定标与真实性检验组6个伪不变定标场、敦煌定标场以及格尔木大灶火地区的地表热辐射及大气特性进行了系统性分析,建立了热红外陆表稳定目标甄选标准,即空间亮温标准差低于0.3 K,发射率时间变异系数低于2%,旨在甄选适用于热红外载荷网络化定标的陆表参考目标,以支持热红外载荷在轨辐射定标精度的提升。结果表明:在1 km空间尺度下满足甄选标准的区域分别为:Libya1_1 km、Libya4_1 km、Algeria3_1 km、Algeria5_1 km、Mauritania1_1 km、Mauritania2_1 km、敦煌_1 km及格尔木_1 km,其中,Libya4_1 km面积最大,为75 km
<math id="M1"><mo>×</mo></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45110362&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45110360&type=
1.52400005
2.28600001
75 km;格尔木_1 km面积最小,为3 km
<math id="M2"><mo>×</mo></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45110362&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45110360&type=
1.52400005
2.28600001
3 km;对于100 m空间尺度,在Libya1_1km、Mauritania1_1km、Mauritania2_1km以及敦煌_1km共甄选出7个满足阈值的区域,最大面积为30 km
<math id="M3"><mo>×</mo></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45110367&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45110365&type=
1.52400005
2.28600001
30 km,最小面积为5 km
<math id="M4"><mo>×</mo></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45110367&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45110365&type=
1.52400005
2.28600001
5 km;Libya1_1 km、Mauritania1_1 km、Mauritania2_1 km以及敦煌_1 km目标区域的空间均一性受空间尺度影响较小,适用于多种空间分辨率热红外载荷定标与真实性检验。
Networked calibration technology using the Earth surface with suitable characteristics as a reference has become a hot topic in the international calibration field. This technology can reduce the uncertainty of independent measurement by means of multiple observations
so calibration frequency and accuracy can be effectively improved. In this study
long-time series of Aqua/MODIS and Landsat8/TIRS thermal infrared data are used to systematically analyze the surface thermal radiation and atmospheric characteristics of eight targets
namely
six pseudo-invariant calibration sites recommended by the Committee on Earth Observation Satellites and the Working Group on Calibration & Validation
the Dunhuang site
and the Geermu Dazaohuo area. Meanwhile
a criterion for selecting land surface stable targets is proposed. Specifically
the criterion states that the spatial standard deviation of brightness temperature should be less than 0.3 K
and the emissivity temporal variation coefficient should be less than 2% so that land surface stable targets suitable for the networked calibration of thermal infrared payloads can be selected for improving the in-orbit calibration accuracy of thermal infrared payloads.
To analyze the applicability of each target area at different spatial resolutions
spatial uniformity and temporal stability are evaluated at 1 km spatial resolution by using MODIS/MYD02_1KM and MODIS/MYD21 thermal infrared data
and the uniform and stable area is obtained. On this basis
spatial uniformity is evaluated at 100 and 500 m spatial resolutions by using Landsat8 thermal infrared data. Then
the uniform and stable regions are obtained at 100 and 500 m spatial resolutions. In addition
to analyze the scale characteristics
this study compares two brightness temperature SDs at 500 m spatial resolution with different features; one is the original 500 m
and the other one is downscaled from 100 m.
Results show that the areas that meet the selection criteria at 1 km spatial resolution are Libya1_1 km
Libya4_1 km
Algeria3_1 km
Algeria5_1 km
Mauritania1_1 km
Mauritania2_1 km
Dunhuang_1 km
and Geermu_1 km. Among them
Libya4_1 km has the largest area of 75 km×75 km
and Geermu_1 km has the smallest area of 3 km×3 km. At 100 m spatial resolution
seven regions are selected further from Libya_1 km
Mauritania1_1 km
Mauritania2_1 km
and Dunhuang_1 km. In these regions
the maximum area is 30 km×30 km
and the minimum area is 5 km×5 km. In addition
the spatial uniformity of Libya1_1 km
Mauritania1_1 km
Mauritania2_1 km
and Dunhuang_1 km is not sensitive to the spatial scale
indicating that that these areas are suitable for the in-orbit calibration of thermal infrared payloads at various spatial resolutions.
热红外空间异质性时间稳定性MODISLandsat 8ECMWF
thermal infraredspatial heterogeneitytime stabilityMODISLandsat 8ECMWF
Bacour C, Briottet X, Bréon F M, Viallefont-Robinet F and Bouvet M. 2019. Revisiting pseudo invariant calibration sites (PICS) over sand deserts for vicarious calibration of optical imagers at 20 km and 100 km scales. Remote Sensing, 11(10): 1166 [DOI: 10.3390/rs11101166http://dx.doi.org/10.3390/rs11101166]
Bannari A A, Omari K, Teillet P M and Fedosejevs G. 2004. Multisensor and multiscale survey and characterization for radiometric spatial uniformity and temporal stability of Railroad Valley Playa (Nevada) test site used for optical sensor calibration//Proceedings of SPIE 5234, Sensors, Systems, and Next-Generation Satellites VII. Barcelona: SPIE: 590-604 [DOI: 10.1117/12.506864http://dx.doi.org/10.1117/12.506864]
Barsi J A, Alhammoud B, Czapla-Myers J, Gascon F, Haque M O, Kaewmanee M, Leigh L and Markham B L. 2018. Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. European Journal of Remote Sensing, 51(1): 822-837 [DOI: 10.1080/22797254.2018.1507613http://dx.doi.org/10.1080/22797254.2018.1507613]
Choi T J, Xiong X X, Angal A, Chander G and Qu J J. 2014. Assessment of the spectral stability of Libya 4, Libya 1, and Mauritania 2 sites using earth observing one Hyperion. Journal of Applied Remote Sensing, 8(1): 083618 [DOI: 10.1117/1.JRS.8.083618http://dx.doi.org/10.1117/1.JRS.8.083618]
Cosnefroy H, Leroy M and Briottet X. 1996. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sensing of Environment, 58(1): 101-114 [DOI: 10.1016/0034-4257(95)00211-1http://dx.doi.org/10.1016/0034-4257(95)00211-1]
Fu Q Y, Min X J, Li X C, Sha C M, Li X Y, Ma G Q, Pan Z Q, Guo Y, Li Q M and Liu G D. 2006. In-flight absolute calibration of the CBERS-02 CCD sensor at the Dunhuang test site. Journal of Remote Sensing, 10(4): 433-439
傅俏燕, 闵祥军, 李杏朝, 沙崇漠, 李小英, 马国强, 潘志强, 郭毅, 李启明, 刘国栋. 2006. 敦煌场地CBERS-02 CCD传感器在轨绝对辐射定标研究. 遥感学报, 10(4): 433-439
Gao C X, Jiang X G, Ma L L and Huo H Y. 2013. Review of radiometric cross-calibration. Arid Land Geography, 36(1): 139-146
高彩霞, 姜小光, 马灵玲, 霍红元. 2013. 传感器交叉辐射定标综述. 干旱区地理, 36(1): 139-146 [DOI: 10.13826/j.cnki.cn65-1103/x.2013.01.004http://dx.doi.org/10.13826/j.cnki.cn65-1103/x.2013.01.004]
García-Santos V, Coll C, Valor E, Niclòs R and Caselles V. 2015. Analyzing the anisotropy of thermal infrared emissivity over arid regions using a new MODIS land surface temperature and emissivity product (MOD21). Remote Sensing of Environment, 169: 212-221 [DOI: 10.1016/j.rse.2015.07.031http://dx.doi.org/10.1016/j.rse.2015.07.031]
Goldberg M, Ohring G, Butler J, Cao C, Datla R, Doelling D, Gärtner V, Hewison T, Iacovazzi B, Kim D, Kurino T, Lafeuille J, Minnis P, Renaut D, Schmetz J, Tobin D, Wang L, Weng F, Wu X, Yu F, Zhang P and Zhu T. 2011. The global space-based inter-calibration system. Bulletin of the American Meteorological Society, 92(4): 467-475 [DOI: 10.1175/2010BAMS2967.1http://dx.doi.org/10.1175/2010BAMS2967.1]
Gu X F, Guyot G and Verbrugghe M. 1990. Analyse de la variabilite spatiale d'un site test. Exemple de la Crau (France). Photo-Interprétation. European Journal of Applied Remote Sensing, 1(5): 39-52
Gyanesh C, Xiao X X, Choi T and Angal A. 2010. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sensing of Environment, 114(4): 925-939 [DOI: 10.1016/j.rse.2009.12.003http://dx.doi.org/10.1016/j.rse.2009.12.003]
He J T and Lu Y H. 1997. The measurement and evaluation of bidirectional reflectance characteristics of Dunhuang radiative calibration site. Journal of Remote Sensing, 1(4): 246-251
何积泰, 陆亦怀. 1997. 敦煌辐射校正场方向反射特性测量与评价. 遥感学报, 1(4): 246-251
He L L. 2020. Selection, evaluation and radiometric calibration application of pseudo-invariant calibration sites (PICS) in Northwest China. Beijing: Chinese Academy of Meteorological Sciences
何灵莉. 2020. 中国西北准不变定标场(PICS)的选取评价和辐射定标应用. 北京: 中国气象科学研究院 [DOI: 10.27631/d.cnki.gzqky.2020.000014http://dx.doi.org/10.27631/d.cnki.gzqky.2020.000014]
Hu T, Renzullo L J, Cao B, van Dijk A I J M, Du Y M, Li H, Cheng J, Xu Z H, Zhou J and Liu Q H. 2019. Directional variation in surface emissivity inferred from the MYD21 product and its influence on estimated surface upwelling longwave radiation. Remote Sensing of Environment, 228: 45-60 [DOI: 10.1016/j.rse.2019.04.012http://dx.doi.org/10.1016/j.rse.2019.04.012]
Hulley G C, Hughes C G and Hook S J. 2012. Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data. Journal of Geophysical Research: Atmospheres, 117(D23): D23113 [DOI: 10.1029/2012jd018506http://dx.doi.org/10.1029/2012jd018506]
Li C, Xue Y, Liu Q H, Guang J, He X W, Zhang J H, Wang T K and Liu X J. 2014. Post calibration of channels 1 and 2 of long-term AVHRR data record based on SeaWiFS data and pseudo-invariant targets. Remote Sensing of Environment, 150: 104-119[DOI: 10.1016/j.rse.2014.04.0 20http://dx.doi.org/10.1016/j.rse.2014.04.020]
Li Y, Zhang Y, Liu J J, Rong Z G, Zhang L J and Zhang Y X. 2009. Calibration of the visible and near-infrared channels of the FY-2C/FY-2D GEO meteorological satellite at radiometric site. Acta Optica Sinica, 29(1): 41-46
李元, 张勇, 刘京晶, 戎志国, 张立军, 张玉香. 2009. 风云二号静止气象卫星可见光通道辐射校正场定标方法研究. 光学学报, 29(1): 41-46 [DOI: 10.3788/AOS20092901.0041http://dx.doi.org/10.3788/AOS20092901.0041]
Neigh C S R, McCorkel J, Campbell P K E, Ong L, Ly V, Landis D and Middleton E M. 2016. Monitoring orbital precession of EO-1 Hyperion with three atmospheric correction models in the Libya-4 PICS. IEEE Geoscience and Remote Sensing Letters, 13(12): 1797-1801 [DOI: 10.1109/LGRS.2016.2612539http://dx.doi.org/10.1109/LGRS.2016.2612539]
Odongo V, Hamm N and Milton E. 2014. Spatio-temporal assessment of Tuz Gölü, turkey as a potential radiometric vicarious calibration site. Remote Sensing, 6(3): 2494-2513 [DOI: 10.3390/rs6032494http://dx.doi.org/10.3390/rs6032494]
Wei H L and Dai C M. 2014. Research of atmospheric transfer correction in radiance measurement: atmospheric radiative transfer model and the analysis of key atmospheric parameters. Infrared and Laser Engineering, 43(3): 884-890
魏合理, 戴聪明. 2014. 辐射特性测量大气传输修正研究: 大气辐射传输模式和关键大气参数分析. 红外与激光工程, 43(3): 884-890 [DOI: 10.3969/j.issn.1007-2276.2014.03.039http://dx.doi.org/10.3969/j.issn.1007-2276.2014.03.039]
Wu A S, Angal A, Xiong J and Cao C Y. 2010. Using CEOS reference standard test sites to track the calibration stability of NOAA-19 AVHRR reflective solar channels//Proceedings of SPIE 7826, Sensors, Systems, and Next-Generation Satellites XIV. Toulouse: SPIE, 7826: 782621 [DOI: 10.1117/12.864601http://dx.doi.org/10.1117/12.864601]
Zhang Y, Rong Z G and Min M. 2016. Accuracy evaluations of the CRCS in-orbit field radiometric calibration methods for thermal infrared channels. Advances in Earth Science, 31(2): 171-179
张勇, 戎志国, 闵敏. 2016. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估. 地球科学进展, 31(2): 171-179 [DOI: 10.11867/j.issn:1001-8166.2016.02.0171http://dx.doi.org/10.11867/j.issn:1001-8166.2016.02.0171]
Zheng X B. 2014. Some respects for development of radiometric calibration techniques for optical remote sensing satellites. Journal of Atmospheric and Environmental Optics, 9(1): 2-8
郑小兵. 2014. 发展光学遥感卫星辐射定标技术的几点思考. 大气与环境光学学报, 9(1): 2-8
相关作者
相关机构