典型遥感降水产品的水文模拟性能评估
Evaluation of typical remote-sensing precipitation products in hydrological simulation
- 2024年28卷第2期 页码:398-413
纸质出版日期: 2024-02-07
DOI: 10.11834/jrs.20222012
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-02-07 ,
扫 描 看 全 文
李艳忠,星寅聪,庄稼成,杨泽龙,赵紫春,李超凡,王启素,谢雨初,王洁,董剑萍,林彬,徐兴祝.2024.典型遥感降水产品的水文模拟性能评估.遥感学报,28(2): 398-413
Li Y Z,Xing Y C,Zhuang J C,Yang Z L,Zhao Z C,Li C F,Wang Q S,Xie Y C,Wang J,Dong J P,Lin B and Xu X Z. 2024. Evaluation of typical remote-sensing precipitation products in hydrological simulation. National Remote Sensing Bulletin, 28(2):398-413
遥感降水具备大尺度、近实时、高精度等优点,现已被广泛应用于流域水资源评估和生态环境保护的研究。但遥感降水产品众多,性能差异较大,不同产品在特定流域的适用性需要进行综合评估。本研究以渭河流域的4个子流域为研究区,以国家气象局(CMA)逐日降水格点数据集为标准,借助ABCD水文模型,评估了5种典型的遥感降水产品(CHIRPS v2.0,CMORPH v1.0,PERSIANN-CDR,TRMM,MSWEP v2.0)对降水等级和水文过程模拟的性能。(1)在捕捉降水的时空变化格局方面,TRMM产品表现出较好的性能;(2)在基本统计指标和分类统计指标方面,多源集成产品MSWEP明显优于其他4种产品;但各遥感产品对中雨和大雨,尤其是大雨的预测效果欠佳;(3)在径流模拟方面,以TRMM降水作为输入时,ABCD模型模拟径流的效果明显优于其他遥感产品,其NSE在渭河上游、泾河上游、马莲河和北洛河分别达到了0.66、0.46、0.56和0.55。TRMM产品在捕捉降水空间格局和径流模拟方面优越,而MSWEP的统计性能较为优越。本文的研究结果,可为半干旱半湿润区域水文和气象等应用研究,在遥感降水数据源的选择方面提供科学参考依据,还可为黄河流域生态保护和高质量发展提供数据支撑。
We comprehensively evaluated various Remote Sensing Precipitation Estimates (RSPEs) to identify the ones that can better capture the precipitation pattern in the Weihe River Basin. Our findings can serve as an important scientific reference for the evaluation and management of water resources in the basin and provide favorable support for the implementation of environmental protection and high-quality development planning in the Yellow River basin.
Based on the gridded precipitation data of CMA and the five popular RSPEs (including CHIRPS v2.0
CMORPH v1.0
PERSIANN-CDR
TRMM 3B42
and MSWEP v2.0)
we comprehensively evaluated the basic skill of precipitation products by using the four statistical metrics
namely
Pearson correlation coefficient (CORR)
bias
Root-Mean-Square Error (RMSE)
and Kling-Gupta Efficient (KGE). We further used three categorical metrics
namely
Probability Of Detection (POD)
False Alarm Ratio (FAR)
and Critical Success Index (CSI). Then
the hydrological simulation skill of RSPEs was also assessed by the traditional lumped hydrological model of ABCD and nash efficiency coefficient (NSE).
All five RMPEs can capture the spatial distribution of precipitation. Among them
MSWEP
based on multi-source weighted-ensemble precipitation
can better capture the spatial heterogeneous of precipitation with superior performance. The spatial distribution of PERSIANN smoothly performed and was underestimated in most areas
resulting in lower performance. At the interannual level
all RMPEs generally performed well in the upper Weihe River
and TRMM was excellent
followed by MSWEP
whereas PERSIANN performed poorly. MSWEP products performed well for basic statistical skills
with lower RMSE
higher CORR
and KGE. However
the CHIRPS and PERSIANN had poor basic statistical skills. For the categorical skill of precipitation
the PERSIANN exhibited good skill for light rain
followed by MSWEP. Additionally
all RMPEs performed better than the other three basins in the upstream of Weihe River. To detect moderate rain and heavy rain
the performance of the PERSIANN was degraded. The MSWEP product had a better POD for these two types of rainfall
but its FAR was also higher. In terms of hydrological simulation performance
the hydrological simulation performance of the TRMM was the best
indicating that the retrieval algorithm of RMPEs based on active microwave had a high hydrological application prospect
followed by the MSWEP and COMRPH. The poor performance was the infrared/near-infrared-based CHIRPS and PERSIANN products
whose retrieval algorithms required further improvement in the climate-sensitive transition region.
TRMM products performed better in capturing the temporal and spatial patterns of precipitation. The multi-source integrated product of MSWEP was significantly better than the other four products. The predictability of each precipitation estimate to moderate and heavy rain was unsatisfactory and was especially poor for the latter one. Using TRMM precipitation as the input of ABCD model
the performance of simulating runoff was significantly better than other remote-sensing products in the four sub-basins of the Weihe River
followed by MSWEP and COMRPH.
遥感降水渭河流域ABCD模型性能评估MSWEP
remotely sensed precipitationWei river basinABCD modelperformance evaluationMSWEP
Allen R G, Pereira L S, Raes D and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Roma: Food and Agriculture Organization
Ashouri H, Hsu K L, Sorooshian S, Braithwaite D K, Knapp K R, Cecil L D, Nelson B R and Prat O P. 2015. PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1): 69-83 [DOI: 10.1175/BAMS-D-13-00068.1http://dx.doi.org/10.1175/BAMS-D-13-00068.1]
Bai P and Liu X M. 2018. Evaluation of five satellite-based precipitation products in two gauge-scarce basins on the Tibetan Plateau. Remote Sensing, 10(8): 1316 [DOI: 10.3390/rs10081316http://dx.doi.org/10.3390/rs10081316]
Bai P, Liu X M, Liang K and Liu C M. 2015. Comparison of performance of twelve monthly water balance models in different climatic catchments of China. Journal of Hydrology, 529: 1030-1040 [DOI: 10.1016/j.jhydrol.2015.09.015http://dx.doi.org/10.1016/j.jhydrol.2015.09.015]
Bai P, Liu X M, Zhang Y Q and Liu C M. 2020. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China. Water Resources Research, 56(10): e2019WR027019 [DOI: 10.1029/2019WR027019http://dx.doi.org/10.1029/2019WR027019]
Beck H E, Pan M, Roy T, Weedon G P, Pappenberger F, van Dijk A I J M, Huffman G J, Adler R F and Wood E F. 2019a. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrology and Earth System Sciences, 23(1): 207-224 [DOI: 10.5194/hess-23-207-2019http://dx.doi.org/10.5194/hess-23-207-2019]
Beck H E, Vergopolan N, Pan M, Levizzani V, van Dijk A I J M, Weedon G P, Brocca L, Pappenberger F, Huffman G J and Wood E F. 2017. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21(12): 6201-6217 [DOI: 10.5194/hess-21-6201-2017http://dx.doi.org/10.5194/hess-21-6201-2017]
Beck H E, Wood E F, Pan M, Fisher C K, Miralles D G, Van Dijk A I J M, McVicar T R and Adler R F. 2019b. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bulletin of the American Meteorological Society, 100(3): 473-500 [DOI: 10.1175/BAMS-D-17-0138.1http://dx.doi.org/10.1175/BAMS-D-17-0138.1]
Chen L and Dirmeyer P A. 2017. Impacts of land-use/land-cover change on afternoon precipitation over north America. Journal of Climate, 30(6): 2121-2140 [DOI: 10.1175/JCLI-D-16-0589.1http://dx.doi.org/10.1175/JCLI-D-16-0589.1]
CPC Central Committee, State Council. 2021. Outline of the Yellow River basin ecological protection and high-quality development plan. Beijing
中共中央国务院. 2021. 黄河流域生态保护和高质量发展规划纲要. 北京
Ding M Z, Yong B and Yang Z K. 2021. Extreme precipitation monitoring capability of IMERG and GSMaP pure satellite precipitation products of Global Precipitation Mission in Chinese mainland. National Remote Sensing Bulletin
丁明泽, 雍斌, 杨泽康. 2021. 全球降水计划IMERG和GSMaP纯卫星降水产品在中国大陆的极端降水监测能力研究. 遥感学报 [DOI: 10.11834/jrs.20210240http://dx.doi.org/10.11834/jrs.20210240]
Ding M Z, Yong B and Yang Z K. 2022. Extreme precipitation monitoring capability of the multi-satellite jointly retrieval precipitation products of Global Precipitation Measurement (GPM) mission. National Remote Sensing Bulletin, 26(4): 657-671
丁明泽, 雍斌, 杨泽康. 2022. 全球降水观测计划多卫星联合反演降水产品的极端降水监测潜力研究. 遥感学报, 26(4): 657-671 [DOI: 10.11834/jrs.20220240http://dx.doi.org/10.11834/jrs.20220240]
Donat M G, Lowry A L, Alexander L V, O’Gorman P A and Maher N. 2016. More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6(5): 508-513 [DOI: 10.1038/NCLIMATE2941http://dx.doi.org/10.1038/NCLIMATE2941]
Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A and Michaelsen J. 2015. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Scientific Data, 2: 150066 [DOI: 10.1038/sdata.2015.66http://dx.doi.org/10.1038/sdata.2015.66]
Han P F and Wang X S. 2016. Forecasting the response of a catchment on extreme climate change with ABCD model. Yellow River, 38(11): 16-22
韩鹏飞, 王旭升. 2016. 利用ABCD模型预测流域水文对极端气候的响应. 人民黄河, 38(11): 16-22 [DOI: 10.3969/j.issn.1000-1379.2016.11.005http://dx.doi.org/10.3969/j.issn.1000-1379.2016.11.005]
Huang S Z, Huang Q, Leng G Y, Zhao M L and Meng E H. 2017. Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: a case study in the Wei River Basin, China. Journal of Hydrology, 546: 515-525 [DOI: 10.1016/j.jhydrol.2016.12.060http://dx.doi.org/10.1016/j.jhydrol.2016.12.060]
Huffman G J, Adler R F, Morrissey M M, Bolvin D T, Curtis S, Joyce R, McGavock B and Susskind J. 2001. Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology, 2(1): 36-50 [DOI: 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2http://dx.doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2]
Joyce R J, Janowiak J E, Arkin P A and Xie P P. 2004. CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3): 487-503 [DOI: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2http://dx.doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2]
Li Y Z, Liu C M, Liu X M, Liang K, Bai P and Feng Y X. 2016. Impact of the grain for green project on the land use/cover change in the middle Yellow River. Journal of Natural Resources, 31(12): 2005-2020
李艳忠, 刘昌明, 刘小莽, 梁康, 白鹏, 冯异星. 2016. 植被恢复工程对黄河中游土地利用/覆被变化的影响. 自然资源学报, 31(12): 2005-2020 [DOI: 10.11849/zrzyxb.20160073http://dx.doi.org/10.11849/zrzyxb.20160073]
Li Y Z, Tian D and Medina H. 2021. Multimodel subseasonal precipitation forecasts over the contiguous united states: skill assessment and statistical postprocessing. Journal of Hydrometeorology, 22(10): 2581-2600 [DOI: 10.1175/JHM-D-21-0029.1http://dx.doi.org/10.1175/JHM-D-21-0029.1]
Liu C M, Li Y Z, Liu X M, Bai P and Liang K. 2016. Impact of vegetation change on water transformation in the middle Yellow River. Yellow River, 38(10): 7-12
刘昌明, 李艳忠, 刘小莽, 白鹏, 梁康. 2016. 黄河中游植被变化对水量转化的影响分析. 人民黄河, 38(10): 7-12 [DOI: 10.3969/j.issn.1000-1379.2016.10.002http://dx.doi.org/10.3969/j.issn.1000-1379.2016.10.002]
Liu J, Xia J, She D X, Li L C, Wang Q and Zou L. 2019. Evaluation of six satellite-based precipitation products and their ability for capturing characteristics of extreme precipitation events over a climate transition area in China. Remote Sensing, 11(12): 1477 [DOI: 10.3390/rs11121477http://dx.doi.org/10.3390/rs11121477]
Liu J, Xia J, Zou L, Wang Q and Yu J Y. 2018. Applicability analysis of multi-satellite remote sensing precipitation data in Tarim River basin. South-to-North Water Transfers and Water Science and Technology, 16(5): 1-8
刘洁, 夏军, 邹磊, 王强, 余江游. 2018. 多卫星遥感降水数据在塔里木河流域的适用性分析. 南水北调与水利科技, 16(5): 1-8 [DOI: 10.13476/j.cnki.nsbdqk.2018.0117http://dx.doi.org/10.13476/j.cnki.nsbdqk.2018.0117]
Ma Y Z, Yang Y, Han Z Y, Tang G Q, Maguire L, Chu Z G and Hong Y. 2018. Comprehensive evaluation of ensemble multi-satellite precipitation dataset using the dynamic bayesian model averaging scheme over the Tibetan plateau. Journal of Hydrology, 556: 634-644 [DOI: 10.1016/j.jhydrol.2017.11.050http://dx.doi.org/10.1016/j.jhydrol.2017.11.050]
Martinez G F and Gupta H V. 2010. Toward improved identification of hydrological models: a diagnostic evaluation of the “abcd” monthly water balance model for the conterminous United States. Water Resources Research, 46(8): W08507 [DOI: 10.1029/2009WR008294http://dx.doi.org/10.1029/2009WR008294]
Motovilov Y G, Gottschalk L, Engeland K and Rodhe A. 1999. Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 98-99: 257-277 [DOI: 10.1016/S0168-1923(99)00102-1http://dx.doi.org/10.1016/S0168-1923(99)00102-1]
Peng S M, Wang Y and Jiang J Q. 2017. Study on the relationship between irrigation water requirement and drought in the main irrigation area of the Yellow River basin. Yellow River, 39(11): 5-10
彭少明, 王煜, 蒋桂芹. 2017. 黄河流域主要灌区灌溉需水与干旱的关系研究. 人民黄河, 39(11): 5-10 [DOI: 10.3969/j.issn.1000-1379.2017.11.002http://dx.doi.org/10.3969/j.issn.1000-1379.2017.11.002]
Peng Z H, Li Y Z, Yu W J, Xing Y C, Feng A Q and Du S W. 2021. Research on the applicability of remote sensing precipitation products in different climatic regions of China. Journal of Geo-information Science, 23(7): 1296-1311
彭振华, 李艳忠, 余文君, 星寅聪, 冯爱青, 杜深文. 2021. 遥感降水产品在中国不同气候区的适用性研究. 地球信息科学学报, 23(7): 1296-1311 [DOI: 10.12082/dqxxkx.2021.200348http://dx.doi.org/10.12082/dqxxkx.2021.200348]
Satgé F, Espinoza R, Zolá R P, Roig H, Timouk F, Molina J, Garnier J, Calmant S, Seyler F and Bonnet M P. 2017. Role of climate variability and human activity on poopó lake droughts between 1990 and 2015 assessed using remote sensing data. Remote Sensing, 9(3): 218 [DOI: 10.3390/rs9030218http://dx.doi.org/10.3390/rs9030218]
Siqueira V A, Fan F M, de Paiva R C D, Ramos M H and Collischonn W. 2020. Potential skill of continental-scale, medium-range ensemble streamflow forecasts for flood prediction in South America. Journal of Hydrology, 590: 125430 [DOI: 10.1016/j.jhydrol.2020.125430http://dx.doi.org/10.1016/j.jhydrol.2020.125430]
Sun Q H, Miao C Y, Duan Q Y, Ashouri H, Sorooshian S and Hsu K L. 2018. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Reviews of Geophysics, 56(1): 79-107 [DOI: 10.1002/2017RG000574http://dx.doi.org/10.1002/2017RG000574]
Tang G Q, Wang W, Zeng Z Y, Guo X L, Li N, Long D and Hong Y. 2015. An overview of the global precipitation measurement (GPM) mission and it’s latest development. Remote Sensing Technology and Application, 30(4): 607-615
唐国强, 万玮, 曾子悦, 郭晓林, 李娜, 龙笛, 洪阳. 2015. 全球降水测量(GPM)计划及其最新进展综述. 遥感技术与应用, 30(4): 607-615 [DOI: 10.11873/j.issn.1004-0323.2015.4.0607http://dx.doi.org/10.11873/j.issn.1004-0323.2015.4.0607]
Thomas H A. 1981. Improved Methods for National Water Assessment, Water Resources Contract: WR15249270. Harvard Water Resources Group
Tian D, Wood E F and Yuan X. 2017. CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrology and Earth System Sciences, 21(3): 1477-1490 [DOI: 10.5194/hess-21-1477-2017http://dx.doi.org/10.5194/hess-21-1477-2017]
Wang R, Shen Q, Peng H C, Yao Y, Li J S, Wang M X, Shi J R and Xu W T. 2022. Study on the applicability of multi-source high-resolution satellite images for monitoring black and odorous water body. National Remote Sensing Bulletin, 26(1): 179-192
王茹, 申茜, 彭红春, 姚月, 李俊生, 汪明秀, 史佳睿, 徐雯婷. 2022. 多源高分辨率卫星影像监测黑臭水体的适用性研究. 遥感学报, 26(1): 179-192 [DOI: 10.11834/jrs.20220479http://dx.doi.org/10.11834/jrs.20220479]
Wei L Y, Jiang S H, Ren L L, Zhang L Q and Zhou M Y. 2019. Evaluation and comparison of multi-source satellite precipitation products in different climate regions over China’s mainland. China Rural Water and Hydropower, (11): 38-44
卫林勇, 江善虎, 任立良, 张林齐, 周梦瑶. 2019. 多源卫星降水产品在不同省份的精度评估与比较分析. 中国农村水利水电, (11): 38-44
Wilson J W and Brandes E A. 1979. Radar measurement of rainfall-A summary. Bulletin of the American Meteorological Society, 60(9): 1048-1060 [DOI: 10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2http://dx.doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2]
Wu G D, Xu J J, Gupta H and Zhang X. 2019. The “abcd” water balance model: application to Xin’an River Basin and sensitivity analysis. Journal of Yangtze River Scientific Research Institute, 36(7): 23-27, 40
吴光东, 许继军, Gupta H, 张潇. 2019. 新安江流域abcd水量平衡模型及参数敏感性分析. 长江科学院院报, 36(7): 23-27, 40 [DOI: 10.11988/ckyyb.20171318http://dx.doi.org/10.11988/ckyyb.20171318]
Xie P P, Chen M Y, Yang S, Yatagai A, Hayasaka T, Fukushima Y and Liu C M. 2007. A gauge-based analysis of daily precipitation over East Asia. Journal of Hydrometeorology, 8(3): 607-626 [DOI: 10.1175/JHM583.1http://dx.doi.org/10.1175/JHM583.1]
Xing Y C, Lin Y X, Li Y Z, Liang K, Liu C M, Du S W, Li X Q, Zhang M and Yun Y E. 2021. Performance of merged multi-satellite precipitation data products based on the ensemble model output statistic (EMOS): a case study in the middle Yellow River. South-to-North Water Transfers and Water Science and Technology, 19(2): 226-236
星寅聪, 林依雪, 李艳忠, 梁康, 刘昌明, 杜深文, 李先青, 张蜜, 云月娥. 2021. 基于EMOS方法的多源遥感降水数据融合与性能评估——以黄河中游为例. 南水北调与水利科技(中英文), 19(2): 226-236 [DOI: 10.13476/j.cnki.nsbdqk.2021.0024http://dx.doi.org/10.13476/j.cnki.nsbdqk.2021.0024]
Xu F L, Guo B, Ye B, Ye Q, Chen H N, Ju X H, Guo J Y and Wang Z L. 2019. Systematical evaluation of GPM IMERG and TRMM 3B42V7 precipitation products in the Huang-Huai-Hai Plain, China. Remote Sensing, 11(6): 697 [DOI: 10.3390/rs11060697http://dx.doi.org/10.3390/rs11060697]
Xu R, Tian F Q, Yang L, Hu H C, Lu H and Hou A Z. 2017. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. Journal of Geophysical Research: Atmospheres, 122(2): 910-924 [DOI: 10.1002/2016JD025418http://dx.doi.org/10.1002/2016JD025418]
Zhang G Q, Wang M M, Zhou T and Chen W F. 2022. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau. National Remote Sensing Bulletin, 26(1): 115-125
张国庆, 王蒙蒙, 周陶, 陈文锋. 2022. 青藏高原湖泊面积、水位与水量变化遥感监测研究进展. 遥感学报, 26(1): 115-125 [DOI: 10.11834/jrs.20221171http://dx.doi.org/10.11834/jrs.20221171]
相关文章
相关作者
相关机构