基于Sentinel-1影像追踪与迭代SVD技术提取格陵兰Petermann冰川流速时序
Time-series Surface Velocity Extraction of Petermann Glacier based on Sentinel-1 Pixel Offset-tracking and Iterative SVD
- 2022年 页码:1-14
DOI: 10.11834/jrs.20222031
引用
扫 描 看 全 文
扫 描 看 全 文
引用
鞠琦,李刚,李超越,冯小蔓,陈晓,杨治斌,陈卓奇.XXXX.基于Sentinel-1影像追踪与迭代SVD技术提取格陵兰Petermann冰川流速时序.遥感学报,XX(XX): 1-14
JU Qi,LI Gang,LI Chaoyue,FENG Xiaoman,CHEN Xiao,YANG Zhibin,CHEN Zhuoqi. XXXX. Time-series Surface Velocity Extraction of Petermann Glacier based on Sentinel-1 Pixel Offset-tracking and Iterative SVD. National Remote Sensing Bulletin, XX(XX):1-14
格陵兰冰盖流速监测对定量估算冰盖物质损失以及研究冰盖对全球变暖的响应具有重要意义。利用SAR影像强度信息进行偏移量追踪是目前冰川流速监测的主要方法。冰川表面散射特性的变化会导致SAR影像强度信息发生改变,导致影像匹配失相关,从而造成提取的流速场中存在大量错误与空洞。为了克服该问题,本文提出了一套基于Sentinel-1 SAR影像提取冰川流速时序的数据处理流程:通过开运算、连通性分析、自适应中值滤波等方法去除单对追踪影像中的噪声与错误;同时利用现有产品的年度和月度平均流速数据完成基准校正并引入角度信息进一步去除部分噪声与粗差;最后通过间隔6、12、18日的追踪影像引入冗余配对,使用迭代的奇异值分解(SVD)方法求解时序方程组,构建冰川流速时序。将利用本方法提取的2018至2020年间格陵兰Petermann溢出冰川6日间隔冰流速时序与现有流速产品进行对比表明,与由单轨数据生成的CPOM冰川流速产品相比,本方法获得的流速时序噪声更少,流速场在时空上更连续平滑,在相同冰川范围内有效数据覆盖范围更广。与由多轨数据合成的PROMICE产品比较表明两者的精度和有效数据覆盖率类似,但本文方法提取的流速时序分辨率更高,有效数据覆盖率更加稳定,且在对于追踪效果较差的夏秋季本方法在抑制噪声方面表现更好。因此本文提出的算法能有效修补影像匹配空洞及剔除异常匹配,并合成高时空分辨率冰川流速时序,对利用星载SAR影像提取格陵兰冰盖流速监测具有重要意义。
Monitoring Greenland glacier flow velocity is essential for quantitative estimation of ice sheet material loss, assessment of the impact of global climate change on ice sheet dynamic, and evaluation of Greenland’s contribution to current sea-level rises. Offset-tracking technique is the main method for deriving glacier velocity by using the intensity information of SAR or optical images. Intensity offset tracking is less sensitive to decorrelation than the InSAR method and can be applied to images with long temporal intervals. However, glacier avalanche, ice avalanche, snowfall and melting-freezing cycles on glaciers still cause changes in the scattering characteristics of the surface, resulting in changes of the SAR image intensity, leading to a loss of correlation in matching between images, especially in summer. Object at providing more accurate glacier flow velocity field, this research proposes a novel data processing strategy of processing Sentinel-1 SAR data and takes the famous Petermann outlet glacier in Greenland as an example to extract its glacier velocity based on image tracking. Noise and errors in tracking images formed by single pairs of Sentinel-1 images are removed through morphological opening operation, connectivity analysis, adaptive median filtering, etc. Meanwhile, the annual and monthly Greenland ice flow velocity products are employed to select datum by taking its low-speed area as reference. We also introduce flow direction of the annual or seasonal glacier flow to filter out wrong matchings. Similar to the small-baseline analysis of the InSAR technique, redundant observation of tracking pairs with 6-, 12-, and 18-days intervals are then applied to the singular value decomposition (SVD) method to solve the time-series of glacier velocity, also to void the possible rank deficit. SVD is iteratively performed to remove the observed coarse error that could not be eliminated in the previous processing by checking residuals of the observation after each iteration. We obtain the time series glacier velocity for Petermann Glacier from 2018 to 2020 with temporal resolution of 6-day. Compared to the published glacier velocity products it finds that our derived results are less noisy, more continuous, smoother, and cover more area than the CPOM product which employs the same data source as we do. Compared to the PROMICE product produced from multi-track SAR data shows that we share similar accuracy and effective data coverage, but the results of this research have higher resolution and are less noisy, especially in summer. We conclude that the proposed algorithm can effectively eliminate the anomalous matching of single offset-tracking pair for forming high spatial and temporal resolution glacier flow velocity time series with redundant matching pairs by an iterative SVD method, which are essential for monitoring glacier flow velocity for Greenland Ice Sheet with satellite SAR images.
格陵兰冰盖冰川流速SARSentinel-1偏移量追踪奇异值分解
Greenland ice sheetglacier velocitySARSentinel-1Offset-Trackingsingular value decomposition
Alley R B, Clark P U, Huybrechts P and Joughin I. 2005. Ice-Sheet and Sea-Level changes. Science, 310(5747): 456-460 [DOI: 10.1126/science.1114613http://dx.doi.org/10.1126/science.1114613]
Fettweis X, Box J E, Agosta C, Amory C, Kittel C, Lang C, van As D, Machguth H and Gallée H. 2017. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11(2): 1015-1033 [DOI: 10.5194/tc-11-1015-2017http://dx.doi.org/10.5194/tc-11-1015-2017]
Gao J and Liu Y. 2001. Applications of remote sensing, GIS and GPS in glaciology: A review. Progress in Physical Geography: Earth and Environment, 25(4): 520-540 [DOI: 10.1177/030913330102500404http://dx.doi.org/10.1177/030913330102500404]
Casu F, Manconi A, Pepe A and Lanari R. 2011. Deformation Time-Series generation in areas characterized by large displacement dynamics: The SAR amplitude Pixel-Offset SBAS technique. IEEE Transactions on Geoscience and Remote Sensing, 49(7): 2752-2763 [DOI: 10.1109/TGRS.2010.2104325http://dx.doi.org/10.1109/TGRS.2010.2104325]
Giles A B, Massom R A and Warner R C. 2009. A method for sub-pixel scale feature-tracking using Radarsat images applied to the Mertz Glacier Tongue, East Antarctica. Remote Sensing of Environment, 113(8): 1691-1699 [DOI: https://doi.org/10.1016/j.rse.2009.03.015https://doi.org/10.1016/j.rse.2009.03.015]
Goldstein R M, Engelhardt H, Kamb B and Frolich R M. 1993. Satellite radar interferometry for monitoring ice sheet motion: Application to an antarctic ice stream. Science, 262(5139): 1525-1530 [DOI: 10.1126/science.262.5139.1525http://dx.doi.org/10.1126/science.262.5139.1525]
Gray A L, Mattar K E, Vachon P W, Bindschadler R, Jezek K C, Forster R and Crawford J P. 1998. InSAR results from the RADARSAT Antarctic Mapping Mission data: Estimation of glacier motion using a simple registration procedure//IGARSS'98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).: 1638-1640 vol.3 [DOI: 10.1109/IGARSS.1998.691662http://dx.doi.org/10.1109/IGARSS.1998.691662]
Heid T and Kääb A. 2012. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sensing of Environment, 118: 339-355 [DOI: https://doi.org/10.1016/j.rse.2011.11.024https://doi.org/10.1016/j.rse.2011.11.024]
Höcker A and Kartvelishvili V. 1996. SVD approach to data unfolding. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 372(3): 469-481 [DOI: https://doi.org/10.1016/0168-9002(95)01478-0https://doi.org/10.1016/0168-9002(95)01478-0]
Hogg A E, Shepherd A, Gourmelen N and Engdahl M. 2016. Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland. Journal of Glaciology, 62(236): 1104-1114 [DOI: DOI: 10.1017/jog.2016.83http://dx.doi.org/DOI:10.1017/jog.2016.83]
Howat I M, Negrete A and Smith B E. 2014. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. The Cryosphere, 8(4): 1509-1518 [DOI: 10.5194/tc-8-1509-2014http://dx.doi.org/10.5194/tc-8-1509-2014]
Howat I. 2017. MEaSUREs Greenland Ice Mapping Project (GIMP) land ice and ocean classification mask, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. [DOI: 10.5067/B8X58MQBFUPAhttp://dx.doi.org/10.5067/B8X58MQBFUPA] [https://nsidc.org/data/nsidc-0714/versions/1https://nsidc.org/data/nsidc-0714/versions/1]
Huang L, Li Z, Zhou J and Tian B. 2014. Glacier change monitoring using SAR: An overview[J]. Advances in Earth Science, 29(9): 985-994
黄磊, 李震, 周建民, 田帮森. 2014. SAR监测冰川变化研究进展[J]. 地球科学进展, 29(9). 985-994[DOI: 10.11867/j.issn.1001-8166.2014.09.0985http://dx.doi.org/10.11867/j.issn.1001-8166.2014.09.0985]
Hu J, Li Z W, Ding X L, Zhu J J, Zhang L and Sun Q. 2014. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133: 1-17 [DOI: https://doi.org/10.1016/j.earscirev.2014.02.005https://doi.org/10.1016/j.earscirev.2014.02.005]
Johannessen O M, Babiker M and Miles M W. 2013. Unprecedented retreat in a 50-Year observational record for petermann glacier, north greenland. Atmospheric and Oceanic Science Letters, 6(5): 259-265 [DOI: 10.3878/j.issn.1674-2834.13.0021http://dx.doi.org/10.3878/j.issn.1674-2834.13.0021]
Joughin I, Howat I, Alley R B, Ekstrom G, Fahnestock M, Moon T, Nettles M, Truffer M and Tsai V C. 2008. Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. Journal of Geophysical Research: Earth Surface, 113(F1)[DOI: https://doi.org/10.1029/2007JF000837]
Joughin I, Smith B E and Howat I. 2018a. Greenland Ice Mapping Project: Ice flow velocity variation at sub-monthly to decadal timescales. The Cryosphere, 12(7): 2211-2227 [DOI: 10.5194/tc-12-2211-2018http://dx.doi.org/10.5194/tc-12-2211-2018]
Joughin I, Smith B E and Howat I. 2018b. A complete map of Greenland ice velocity derived from satellite data collected over 20 years. Journal of Glaciology, 64(243): 1-11 [DOI: DOI: 10.1017/jog.2017.73http://dx.doi.org/DOI:10.1017/jog.2017.73]
Kaushik S, Joshi P K and Singh T. 2019. Development of glacier mapping in Indian Himalaya: A review of approaches. International Journal of Remote Sensing, 40(17): 6607-6634 [DOI: 10.1080/01431161.2019.1582114http://dx.doi.org/10.1080/01431161.2019.1582114]
Lemos A, Shepherd A, McMillan M, Hogg A E, Hatton E and Joughin I. 2018. Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery. The Cryosphere, 12(6): 2087-2097 [DOI: 10.5194/tc-12-2087-2018http://dx.doi.org/10.5194/tc-12-2087-2018]
Li Fei, Wang Zhenling, Zhang Yu, Zhang Shengkai, Zhu Tingting. Amery Ice Shelf Frontal Position Automatic Detection from Sentinel-1 SAR Imagery. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2012-2022.
李斐, 王振领, 张宇, 张胜凯, 朱婷婷. 2018. 基于sentinel-1 SAR的埃默里冰架前端位置自动检测研究. 武汉大学学报(信息科学版), 43(12): 2012-2022 [DOI: 10.13203/j.whugis20180171http://dx.doi.org/10.13203/j.whugis20180171]
Li J, Li Z, Wu L, Xu B, Hu J, Zhou Y and Miao Z. 2018. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique. Journal of Hydrology, 559: 596-608 [DOI: https://doi.org/10.1016/j.jhydrol.2018.02.067https://doi.org/10.1016/j.jhydrol.2018.02.067]
Li X, Che T and Li X. 2020. Remote Sensing of Cryosphere[M]. Beijing: Science Press, 38-40
李新, 车涛, 李新武. 2020. 冰冻圈遥感学[M]. 北京: 科学出版社: 38-40
Luckman A, Quincey D and Bevan S. 2007. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sensing of Environment, 111(2): 172-181 [DOI: https://doi.org/10.1016/j.rse.2007.05.019https://doi.org/10.1016/j.rse.2007.05.019]
Merryman Boncori J P, Langer Andersen M, Dall J, Kusk A, Kamstra M, Bech Andersen S, Bechor N, Bevan S, Bignami C, Gourmelen N, Joughin I, Jung H, Luckman A, Mouginot J, Neelmeijer J, Rignot E, Scharrer K, Nagler T, Scheuchl B and Strozzi T. 2018. Intercomparison and validation of SAR-Based ice velocity measurement techniques within the greenland ice sheet CCI project. Remote Sensing, 10(6)[DOI: 10.3390/rs10060929]
Nick F M, Luckman A, Vieli A, Van Der Veen C J, Van As D, Van De Wal R S W, Pattyn F, Hubbard A L and Floricioiu D. 2012. The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. Journal of Glaciology, 58(208): 229-239 [DOI: 10.3189/2012JoG11J242http://dx.doi.org/10.3189/2012JoG11J242]
Ouchi K. 2013. Recent trend and advance of synthetic aperture radar with selected topics. Remote Sensing, 5(2)[DOI: 10.3390/rs5020716]
Pearce W, Holmberg K, Hellsten I and Nerlich B. 2014. Climate Change on Twitter: Topics, Communities and Conversations about the 2013 IPCC Working Group 1 Report. PLOS ONE, 9(4): e94785 [DOI: 10.1371/journal.pone.0094785http://dx.doi.org/10.1371/journal.pone.0094785]
Rignot E and Kanagaratnam P. 2006. Changes in the velocity structure of the greenland ice sheet. Science, 311(5763): 986-990 [DOI: 10.1126/science.1121381http://dx.doi.org/10.1126/science.1121381]
Rignot E, Velicogna I, van den Broeke M R, Monaghan A and Lenaerts J T M. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38(5)[DOI: https://doi.org/10.1029/2011GL046583]
Rott H. 2009. Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Progress in Physical Geography: Earth and Environment, 33(6): 769-791 [DOI: 10.1177/0309133309350263http://dx.doi.org/10.1177/0309133309350263]
Rückamp M, Neckel N, Berger S, Humbert A and Helm V. 2019. Calving induced speedup of petermann glacier. Journal of Geophysical Research: Earth Surface, 124(1): 216-228 [DOI: https://doi.org/10.1029/2018JF004775https://doi.org/10.1029/2018JF004775]
Scambos T A, Dutkiewicz M J, Wilson J C and Bindschadler R A. 1992. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing of Environment, 42(3): 177-186 [DOI: https://doi.org/10.1016/0034-4257(92)90101-Ohttps://doi.org/10.1016/0034-4257(92)90101-O]
Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M, Velicogna I, Whitehouse P, Briggs K, Joughin I, Krinner G, Nowicki S, Payne T, Scambos T, Schlegel N, A G, Agosta C, Ahlstrøm A, Babonis G, Barletta V R, Bjørk A A, Blazquez A, Bonin J, Colgan W, Csatho B, Cullather R, Engdahl M E, Felikson D, Fettweis X, Forsberg R, Hogg A E, Gallee H, Gardner A, Gilbert L, Gourmelen N, Groh A, Gunter B, Hanna E, Harig C, Helm V, Horvath A, Horwath M, Khan S, Kjeldsen K K, Konrad H, Langen P L, Lecavalier B, Loomis B, Luthcke S, McMillan M, Melini D, Mernild S, Mohajerani Y, Moore P, Mottram R, Mouginot J, Moyano G, Muir A, Nagler T, Nield G, Nilsson J, Noël B, Otosaka I, Pattle M E, Peltier W R, Pie N, Rietbroek R, Rott H, Sandberg Sørensen L, Sasgen I, Save H, Scheuchl B, Schrama E, Schröder L, Seo K, Simonsen S B, Slater T, Spada G, Sutterley T, Talpe M, Tarasov L, van de Berg W J, van der Wal W, van Wessem M, Vishwakarma B D, Wiese D, Wilton D, Wagner T, Wouters B, Wuite J and The I T. 2020. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579(7798): 233-239 [DOI: 10.1038/s41586-019-1855-2http://dx.doi.org/10.1038/s41586-019-1855-2]
Solgaard A, Kusk A, Merryman Boncori J P, Dall J, Mankoff K D, Ahlstrøm A P, Andersen S B, Citterio M, Karlsson N B, Kjeldsen K K, Korsgaard N J, Larsen S H and Fausto R S. 2021. Greenland ice velocity maps from the PROMICE project. Earth Syst. Sci. Data, 13(7): 3491-3512 [DOI: 10.5194/essd-13-3491-2021http://dx.doi.org/10.5194/essd-13-3491-2021]
Strozzi T, Luckman A, Murray T, Wegmuller U and Werner C L. 2002. Glacier motion estimation using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384-2391 [DOI: 10.1109/TGRS.2002.805079http://dx.doi.org/10.1109/TGRS.2002.805079]
Trusel L D, Das S B, Osman M B, Evans M J, Smith B E, Fettweis X, McConnell J R, Noël B P Y and van den Broeke M R. 2018. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564(7734): 104-108 [DOI: 10.1038/s41586-018-0752-4http://dx.doi.org/10.1038/s41586-018-0752-4]
Whillans I M and Tseng Y. 1995. Automatic tracking of crevasses on satellite images. Cold Regions Science and Technology, 23(2): 201-214 [DOI: https://doi.org/10.1016/0165-232X(94)00009-Mhttps://doi.org/10.1016/0165-232X(94)00009-M]
Wu S., Yao Z., Jiang L., & Liu Z. 2015. Method review of modern glacier volume change. Advances in Earth Science, 30(2), 237-246.
吴珊珊, 姚治君, 姜丽光, 刘兆飞. 2015. 现代冰川体积变化研究方法综述. 地球科学进展, 30(2): 237-246[DOI: 10.11867/j.issn.1001-8166.2015.02.0237http://dx.doi.org/10.11867/j.issn.1001-8166.2015.02.0237]
Zhou J M,Zhang X,Liu Z P and Li Z. 2021. Extraction and analysis of mountain glacier movement from GF-1 satellite data. National Remote Sensing Bulletin,25(2):530-538
周建民,张鑫,刘志平,李震.2021.高分一号山地冰川运动速度提取与分析.遥感学报,25(2):530-538[DOI:10.11834/jrs.20219080http://dx.doi.org/10.11834/jrs.20219080]
相关作者
相关机构