高分七号卫星立体影像与激光数据复合测绘处理原理及方法
Principle and Method of GF-7 Satellite Integrated processing of Stereo Image and Laser Data
- 2022年 页码:1-14
DOI: 10.11834/jrs.20222063
扫 描 看 全 文
扫 描 看 全 文
周平, 唐新明. 高分七号卫星立体影像与激光数据复合测绘处理原理及方法[J/OL]. 遥感学报, 2022,1-14.
Ping ZHOU, Xinming TANG. Principle and Method of GF-7 Satellite Integrated processing of Stereo Image and Laser Data[J/OL]. National Remote Sensing Bulletin, 2022,1-14.
高分七号卫星(GF-7)是全球首颗同步搭载了光学立体相机和激光测高仪的对地观测卫星,可以同时获取亚米分辨率的两线阵光学立体影像和稀疏地面激光高程点,并期望通过激光高程点来提升立体影像的高程精度,以保障GF-7卫星能够服务于全球范围1:1万比例尺立体测图。本文根据光学相机和激光测高仪工作过程中的误差传播机理,分析了利用激光高程点提升立体影像高程精度的基本原理。设计了一种GF-7立体影像与激光高程点复合测绘处理方法,包括构建了激光高程点在立体影像上自动精确量测方法、激光高程点与立体影像联合区域网平差模型等。实现立体影像高程精度有效提升。选取了中国河北省北部区域70景GF-7立体影像和463个激光高程点开展复合测绘处理试验,结果表明,立体影像在平地、丘陵、山地、高山地和全区域的高程中误差分别由原来的3.0m、4.68m、2.86m、2.48m和3.19m,降低至0.35m、0.66m、0.74m、0.91m和0.68m;平面中误差分别是4.99m、3.52m、4.42m、5.99m和4.82m。影像平面和高程精度均已满足中国1:1万比例尺立体测图的精度要求。目前采用本文所述方法构建的GF-7立体影像与激光高程点复合测绘处理系统已在GF-7卫星牵头主用户单位实现业务化应用,对未来全球范围1:1万比例尺地理信息资源建设具有重要意义。
The GF-7 satellite is the world's first earth observation satellite synchronously equipped with an optical stereo camera and an operational laser altimeter, which can simultaneously obtain sub-meter resolution dual linear-array stereo images and sparse ground laser altimetry points (LAPs). And it was expected that the LAPs can be used for improving the elevation accuracy of stereo images, so as to ensure that the GF-7 satellite can be applied to the global 1:10,000-scale stereo mapping. Based on the error propagation principle of the working processes of satellite cameras and laser altimeter, the basic principles of improving the elevation accuracy of stereo images by utilizing LAPs was firstly analysed in this study. Then, an integrated processing method of GF-7 satellite stereo images and LAPs was designed, including the construction of precise measurement method of LAPs on stereo images, and the combined block adjustment model of LAPs and stereo images. Finally, the elevation accuracy of the stereo images are effectively improved. A total of 70 stereo images and 463 LAPs of GF-7 satellite in the northern region of Hebei province, China, were selected to carry out integrated processing experiments,and the results show that the vertical root mean square error (RMSE) of stereo images in the flat, hilly, mountainous, high-mountainous and entire region was reduced from the original 3.0m, 4.68m, 2.86m, 2.48m and 3.19m to 0.35m, 0.66m, 0.74m, 0.91m and 0.68m, respectively, and the horizontal RMSE of stereo images were 4.99m, 3.52m, 4.42m, 5.99m and 4.82m, respectively. It can be seen from these results that the horizontal and vertical accuracy of GF-7 stereo images had satisfied the accuracy requirements of China's 1:10,000-scale mapping in China. At present, the integrated processing software system of GF-7 satellite stereo images and LAPs constructed by the method described in this paper had achieved business application, which had the great significance for the future construction of global 1:10000-scale geographical information resources.
高分七号卫星激光高程点复合测绘处理1:10000比例尺测图
GF-7 satelliteLaser altimetry pointIntegrated processing1:10000-scale mapping
Cao N, Zhou P, Wang X, et al. 2018. Refined processing of satellite imaging geometric model assisted by laser altimetry data. Journal of Remote Sensing, 22(4):599-610.
曹宁, 周平, 王霞等. 2018. 激光测高数据辅助卫星成像几何模型精化处理. 遥感学报, (4): 599-610.
CH/T 9009.1-2013. 2013. Digital products of fundamental geographic information—1:5000 1:10000 1:25000 1:50000 1:100000—Part 1 :Digital line graphs. Surveying and mapping industry standard of China.
CH/T 9009.1-2013. 2013. 基础地理信息数字成果1:5000 1:10000 1:25000 1:50000 1:100000第1部分:数字线划图. 中华人民共和国测绘行业标准.
E D C, Shen Q, Xu Y. 2009. High-accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat/GLAS data in Antarctica. Science in China Series D Earth Sciences, 52(5):714-722.
Fraser C S, Yamakawa T. 2004. Insights into the affine model for high-resolution satellite sensor orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 58(5-6):275-288.
Fricker H A, Ridgway J R, Minster J B, et al. 2012. The Algorithm Theoretical Basis Document for Tidal Corrections. NASA Goddard Space Flight Center. [Online]. Available:https://ntrs. nasa. gov/search. jsp?R=20130013632https://ntrs.nasa.gov/search.jsp?R=20130013632.
Gruen A. 1985. Adaptive Least Squares Correlation: A Powerful Image Matching Technique. Proceedings of the South African Journal of Photogrammetry, Remote Sensing and Cartography.
Herring T A, Quinn K J. 2012. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. NASA Goddard Space Flight Center. [Online]. Available: https://ntrs. nasa. gov/search. jsp?R=20130001652https://ntrs.nasa.gov/search.jsp?R=20130001652.
Hofton M A, Minster J B, and Blair J B. 1999. Gaussian Decomposition of laser altimeter waveforms. IEEE Transactions on Geoscience & Remote Sensing, 38(4): 1989-1996.
Jiang Y H, Zhang G, Tang X M, et al. 2014. Geometric Calibration and Accuracy Assessment of ZiYuan-3 Multispectral Images. IEEE Transactions on Geoscience and Remote Sensing, 52(7): 4161-4172.
Li GY. 2017. Processing method and engineering practice of laser altimetry data of Earth Observation Satellite. Dissertation for the Doctoral Degree, Wuhan:Wuhan University, 38-53.
李国元. 2017. 对地观测卫星激光测高数据处理方法与工程实践.博士论文, 武汉:武汉大学.
Li G, Tang X M, Gao X M, et al. 2016. ZY-3 Block adjustment supported by glas laser altimetry data. Photogrammetric Record, 31(153):88-107.
Li G Y, Tang X M, Chen J Y, et al. 2022. Processing and preliminary accuracy validation of the GF-7 satellite laser altimetry data, Acta Geodaetica et Cartographica Sinica, Accepted.
李国元,唐新明,陈继溢等. 2022. 高分七号卫星激光测高数据处理与精度初步验证, 测绘学报,已录用.
Li G Y, Tang X M, Gao X M, et al. 2018. Integration of ZY3-02 Satellite Laser Altimetry Data and Stereo Images for High-Accuracy Mapping. Photogrammetric Engineering & Remote Sensing, 84(9), . 569-578.
Lowe D G. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Computer, 60: 91–110.
Schutz B E, Zwally H, Shuman C, et al. 2005. Overview of the ICESat Mission. Geophysical Research Letters, 32(21):97-116.
Takaku J, Tadono T, Tsutsui K. 2014. Algorithm development of high resolution global DSM generation by ALOS prism. IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium.
Tang X M, Xie J F, Mo F, et al. 2021. GF-7 dual-beam laser altimeter on-orbit geometric calibration and test verification. Acta Geodaetica et Cartographica Sinica, 50(3): 384-395.
唐新明, 谢俊峰, 莫凡等. 2021. 高分七号卫星双波束激光测高仪在轨几何检校与试验验证. 测绘学报, 50(3): 384-395.
Tang X M, Zhou P, Zhang G, et al. 2014. Research on production method of sensor calibration products for ZY3 surveying and mapping satellite. Geomatics and Information Science of Wuhan University, 39(3): 287-294.
唐新明, 周平, 张过等,2014. 资源三号测绘卫星传感器校正产品生产方法研究. 武汉大学学报.信息科学版, 39(3), 287-294, 299.
Thomas A N, Anthony J M, Thorsten M, et al. 2019. The Ice, Cloud, and Land Elevation Satellite-2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sensing of Environment, 233, 111325.
Wang Z Z. 1979. The Principle of Photogrammetry. China Surveying and Mapping.
王之卓. 1979. 摄影测量原理. 测绘出版社.
Xie J F, Huang G H, Liu R, et al. 2020. Design and Data Processing of China’s first Spaceborne Laser Altimeter System for Earth Observation: Gao Fen–7. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:1034-1044.
Xie J F, Tang X M, Mo F, et al. 2018. In-orbit geometric calibration and experimental verification of the ZY3-02 laser altimeter. Photogrammetric Record, 163:341-362.
Yao J Q, Li G Y, Chen J Y, et al. 2021. Cloud Detection and Centroid Extraction of Laser Footprint Image of GF-7 Satellite Laser Altimetry. Journal of Geodesy and Geoinformation Science, 4(3): 1-12.
Yoon J S, Shan J. 2005. Combined adjustment of MOC stereo imagery and MOLA altimetry data. Photogrammetric Engineering & Remote Sensing, 71(10):1179-1186.
Zhang G, Xu K, Jia P, et al. 2019. Integrating Stereo Images and Laser Altimeter Data of the ZY3-02 Satellite for Improved Earth Topographic Modeling. Remote Sensing, 11(20), 2453.
Zhou P, Tang X M, Wang Z M, et al.2017. Vertical Accuracy Effect Verification for Satellite Imagery With Different GCPs. IEEE Geoscience & Remote Sensing Letters, 14(8):1268-1272.
Zhou P. 2016. Key Technology of High Precision Geometric Processing and Evaluation of Mapping Efficiency for ZY-3 Remote Sensing Image. Dissertation for the Doctoral Degree, WuHan : WuHan University.
周平. 2016. 资源三号卫星遥感影像高精度几何处理关键技术与测图效能评价方法. 博士论文, 武汉:武汉大学.
Zhou P, Tang X M, Wang X, et al. 2018. Geometric Accuracy Evaluation Model of Domestic Push-Broom Mapping Satellite Image. Geomatics and Information Science of Wuhan University, 43(11): 1628-1634.
周平, 唐新明, 王霞等. 2018. 国产推扫式测图卫星影像几何精度评估模型. 武汉大学学报:信息科学版, 43(11):1628-1634.
Zhou T, Popescu S C, Krause K, et al. 2017. Gold–A novel deconvolution algorithm with optimization for waveform LiDAR processing. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 131-150.
相关作者
相关机构