中国遥感真实性检验基础设施建设发展态势分析
Analysis of the development trend of Chinese remote sensing validation sites and infrastructure construction
- 2023年27卷第5期 页码:1088-1098
纸质出版日期: 2023-05-07
DOI: 10.11834/jrs.20231694
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-05-07 ,
扫 描 看 全 文
高海亮,顾行发,周翔,余涛,王艺学.2023.中国遥感真实性检验基础设施建设发展态势分析.遥感学报,27(5): 1088-1098
Gao H L,Gu X F,Zhou X,Yu T and Wang Y X. 2023. Analysis of the development trend of Chinese remote sensing validation sites and infrastructure construction. National Remote Sensing Bulletin, 27(5):1088-1098
遥感产品的真实性检验研究是当前遥感领域研究的热点和难点。真实性检验基础设施的建设是实现遥感产品真实性检验的关键环节。近年来,中国先后启动国家民用空间基础设施真实性检验场网(简称空基场网)和高分专项国家真实性检验场站网(简称高分站网)的建设,形成由60余个站点组成,具备40余种遥感产品检验能力的场网体系。本文在介绍了国内外已有场网的基础上,详细介绍了空基场网和高分站网的建设目标、站点组成和测量产品。结合当前空基场网和高分站网的建设现状,提出了建设中国真实性检验的思路,探讨了建设真实性检验站网的技术体系,从理论研究、标准规范制定、场网建设和产品验证评价4个方面进行分析,为中国今后真实性检验站网建设和遥感产品的真实性检验提供参考。
The validation of remote sensing products is a challenging and critical aspect of remote sensing research. The construction of validation infrastructure is key in validating remote sensing products. In recent years
China has successively launched the construction of the National Civil Space Infrastructure Validation Test Sites Network (Space-based Site Network) and the Gaofen National Validation Test Site Network (Gaofen Site Network)
forming a network system with over 60 test sites and the ability to validate more than 40 types of remote sensing products. This paper analyzes and summarizes the validation infrastructure internationally and identifies three categories of validation infrastructure: automatic observation networks for atmospheric and ground surface parameters
observation test site networks for ecological parameters with automatic and manual measurements
and temporary experimental sites based on large-scale comprehensive experiments. The paper provides a detailed introduction to the test site selection principles
number of test sites
and product types for the Space-based Site Network and Gaofen Site Network. The differences between the two networks are also analyzed
and the preliminary results of each network are presented. The Space-based Site Network consists of 48 test sites and has the ability to validate 24 common remote sensing products in six categories. It is a business-oriented network that focuses more on long-term business measurement
using unified measurement equipment for measurement. On the contrary
the Gaofen Site Network is a research-based network with a focus on research on measurement theory and methods
as well as the development of standard specifications. It consists of 42 test sites and has the ability to validate 41 common remote sensing products in seven categories
mainly relying on the site’s own equipment for measurement. The paper proposes the idea of building a validation test site network in China based on the current construction status of the Space-based Site Network and Gaofen Site Network. It explores the technical system for building a validation test network and analyzes it from four aspects: theoretical research
standard specification formulation and optimization
validation test site network construction
and remote sensing product validation and evaluation. This paper provides a reference for the future construction of validation test site networks and the validation of remote sensing products in China. In the future
it is essential to intensify relevant theoretical research and test site network construction
and combine the development plan of validation in China to do a good job in the top-level design of the validation test site system. It is also necessary to further improve the established validation test site network system
improve the accuracy and frequency of site measurement data
accelerate the commercialization of network operation and the release of validation reports
and continuously improve the Space-based Site Network and Gaofen Site Network system to provide support for China’s Earth observation system and promote the development of quantitative remote sensing in China.
遥感真实性检验基础设施空基场网高分站网技术体系
remote sensingvalidationinfrastructure site constructionGaofen station networktechnical system
Baldocchi D. 2008. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56(1): 1-26 [DOI: 10.1071/BT07151http://dx.doi.org/10.1071/BT07151]
Baldocchi D, Falge E, Gu L H, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw U K T, Pilegaard K, Schmid H P, Valentini R, Verma S, Vesala T, Wilson K and Wofsy S. 2001. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434 [DOI: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2http://dx.doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2]
Bosch D D, Lakshmi V, Jackson T J, Choi M and Jacobs J M. 2006. Large scale measurements of soil moisture for validation of remotely sensed data: Georgia soil moisture experiment of 2003. Journal of Hydrology, 323(1/4): 120-137 [DOI: 10.1016/j.jhydrol.2005.08.024http://dx.doi.org/10.1016/j.jhydrol.2005.08.024]
Dorigo W, Himmelbauer I, Aberer D, Schremmer L, Petrakovic I, Zappa L, Preimesberger W, Xaver A, Annor F, Ardö J, Baldocchi D, Bitelli M, Blöschl G, Bogena H, Brocca L, Calvet J C, Camarero J J, Capello G, Choi M, Cosh M C, Van De Giesen N, Hajdu I, Ikonen J, Jensen K H, Kanniah K D, de Kat I, Kirchengast G, Rai P K, Kyrouac J, Larson K, Liu S X, Loew A, Moghaddam M, Martínez Fernández J, Bader C M, Morbidelli R, Musial J P, Osenga E, Palecki M A, Pellarin T, Petropoulos G P, Pfeil I, Powers J, Robock A, Rüdiger C, Rummel U, Strobel M, Su Z B, Sullivan R, Tagesson T, Varlagin A, Vreugdenhil M, Walker J, Wen J, Wenger F, Wigneron J P, Woods M, Yang K, Zeng Y J, Zhang X, Zreda M, Dietrich S, Gruber A, van Oevelen P, Wagner W, Scipal K, Drusch M and Sabia R. 2021. The International Soil Moisture Network: serving Earth system science for over a decade. Hydrology and Earth System Sciences, 25(11): 5749-5804 [DOI: 10.5194/hess-25-5749-2021http://dx.doi.org/10.5194/hess-25-5749-2021]
Dorigo W A, Wagner W, Hohensinn R, Hahn S, Paulik C, Xaver A, Gruber A, Drusch M, Mecklenburg S, van Oevelen P, Robock A and Jackson T. 2011. The international soil moisture network: a data hosting facility for global in situ soil moisture measurements. Hydrology and Earth System Sciences, 15(5): 1675-1698 [DOI: 10.5194/hess-15-1675-2011http://dx.doi.org/10.5194/hess-15-1675-2011]
Driemel A, Augustine J, Behrens K, Colle S, Cox C, Cuevas-Agulló E, Denn F M, Duprat T, Fukuda M, Grobe H, Haeffelin M, Hodges G, Hyett N, Ijima O, Kallis A, Knap W, Kustov V, Long C N, Longenecker D, Lupi A, Maturilli M, Mimouni M, Ntsangwane L, Ogihara H, Olano X, Olefs M, Omori M, Passamani L, Pereira E B, Schmithüsen H, Schumacher S, Sieger R, Tamlyn J, Vogt R, Vuilleumier L, Xia X G, Ohmura A and König-Langlo G. 2018. Baseline Surface Radiation Network (BSRN): structure and data description (1992-2017). Earth System Science Data, 10(3): 1491-1501[DOI: 10.5194/essd-10-1491-2018http://dx.doi.org/10.5194/essd-10-1491-2018]
Ge Y, Wang J H, Heuvelink G B M, Jin R, Li X and Wang J F. 2015. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River basin, China. International Journal of Geographical Information Science, 29(1): 92-110[DOI: 10.10.80/13658816.2014.948446http://dx.doi.org/10.10.80/13658816.2014.948446]
Haase P, Frenzel M, Klotz S, Musche M and Stoll S. 2016. The long-term ecological research (LTER) network: relevance, current status, future perspective and examples from marine, freshwater and terrestrial long-term observation. Ecological Indicators, 65: 1-3 [DOI: 10.1016/j.ecolind.2016.01.040http://dx.doi.org/10.1016/j.ecolind.2016.01.040]
Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Vermote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowiak I and Smirnov A. 1998. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1): 1-16 [DOI: 10.1016/S0034-4257(98)00031-5http://dx.doi.org/10.1016/S0034-4257(98)00031-5]
Hu M G, Wang J H, Ge Y, Liu M X, Liu S M, Xu Z W and Xu T R. 2015. Scaling flux tower observations of sensible heat flux using weighted area-to-area regression Kriging. Atmosphere, 6(8): 1032-1044 [DOI: 10.3390/atmos6081032http://dx.doi.org/10.3390/atmos6081032]
Jia S Z, Ma M G and Yu W P. 2014. Validation of the LAI product in Heihe River Basin. Remote Sensing Technology and Application, 29(6): 1037-1045
家淑珍, 马明国, 于文凭. 2014. 黑河中游LAI产品的真实性检验研究. 遥感技术与应用, 29(6): 1937-1045 [DOI: 10.11873/j.issn.1004-0323.2014.6.1037http://dx.doi.org/10.11873/j.issn.1004-0323.2014.6.1037]
Jin R, Li X, Ma M G, Ge Y, Liu S M, Xiao Q, Wen J G, Zhao K, Xin X P, Ran Y H, Liu Q H and Zhang R H. 2017. Key methods and experiment verification for the validation of quantitative remote sensing products. Advances in Earth Science, 32(6): 630-642
晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 2017. 陆地定量遥感产品的真实性检验关键技术与试验验证. 地球科学进展, 32(6): 630-642 [DOI: 10.11867/j.issn.1001-8166.2017.06.0630http://dx.doi.org/10.11867/j.issn.1001-8166.2017.06.0630]
Justice C, Belward A, Morisette J, Lewis P, Privette J and Baret F. 2000. Developments in the ‘validation’ of satellite sensor products for the study of the land surface. International Journal of Remote Sensing, 21(17): 3383-3390 [DOI: 10.1080/014311600750020000http://dx.doi.org/10.1080/014311600750020000]
Kang J, Li X, Jin R, Ge Y, Wang J F and Wang J H. 2014. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China. Sensors, 14(10): 19095-19114 [DOI: 10.3390/s141019095http://dx.doi.org/10.3390/s141019095]
Li X W. 2006. Review of the project of quantitative remote sensing of major factors for spatial-temporal heterogeneity on the land surface. Advances in Earth Science, 21(8): 771-780
李小文. 2006. 地球表面时空多变要素的定量遥感项目综述. 地球科学进展, 21(8): 771-780 [DOI: 10.3321/j.issn:1001-8166.2006.08.001http://dx.doi.org/10.3321/j.issn:1001-8166.2006.08.001]
Liu Q H, Cao B, Zeng Y L, Li J, Du Y M, Wen J G, Fan W L, Zhao J and Yang L. 2016. Recent progresses on the remote sensing radiative transfer modeling over heterogeneous vegetation canopy. Journal of Remote Sensing, 20(5): 933-945
柳钦火, 曹彪, 曾也鲁, 李静, 杜永明, 闻建光, 范渭亮, 赵静, 杨乐. 2016. 植被遥感辐射传输建模中的异质性研究进展. 遥感学报, 20(5): 933-945 [DOI: 10.11834/jrs.20166280http://dx.doi.org/10.11834/jrs.20166280]
Liu Y, Wang J D, Zhou H M and Xue H Z. 2010. LAI measuring data processing, analysis and spatial scaling in the middle reaches of Heihe experimental research region. Remote Sensing Technology and Application, 25(6): 805-813
刘艳, 王锦地, 周红敏, 薛华柱. 2010. 黑河中游试验区不同分辨率LAI数据处理、分析和尺度转换. 遥感技术与应用, 25(6): 805-813 [DOI: 10.11873/j.issn.1004-0323.2010.6.805http://dx.doi.org/10.11873/j.issn.1004-0323.2010.6.805]
Liu Y, Wang J D, Zhou H M and Xue H Z. 2014. Upscaling approach for validation of LAI products derived from remote sensing observation. Journal of Remote Sensing, 18(6): 1189-1198
刘艳, 王锦地, 周红敏, 薛华柱. 2014. 用地面点测量数据验证LAI产品中的尺度转换方法. 遥感学报, 18(6): 1189-1198 [DOI: 10.11834/jrs.20144084http://dx.doi.org/10.11834/jrs.20144084]
Long C, Michalsky J and König-Langlo G. 2015. The baseline surface radiation network: surface radiation observations for climate research//Global Monitoring Annual Conference 2015. Boulder, Colorado: NOAA Earth System Research Laboratory, Global Monitoring Division
Luan H J, Tian Q J, Gu X F, Yu T and Hu X L. 2013a. Establishing continuous scaling of NDVI based on fractal theory and GEOEYE-1 image. Journal of Infrared and Millimeter Waves, 32(6): 538-544, 549
栾海军, 田庆久, 顾行发, 余涛, 胡新礼. 2013a. 基于分形理论与GEOEYE-1影像的NDVI连续空间尺度转换模型构建及应用. 红外与毫米波学报, 32(6): 538-544, 549 [DOI: 10.3724/sp.j.1010.2013.00538http://dx.doi.org/10.3724/sp.j.1010.2013.00538]
Luan H J, Tian Q J, Yu T, Hu X L, Huang Y, Du L T, Zhao L M, Wei X, Han J, Zhang Z W and Li S P. 2013b. Modeling continuous scaling of NDVI based on fractal theory. Spectroscopy and Spectral Analysis, 33(7): 1857-1862
栾海军, 田庆久, 余涛, 胡新礼, 黄彦, 杜灵通, 赵利民, 魏曦, 韩杰, 张周威, 李少鹏. 2013b. 基于分形理论的NDVI连续空间尺度转换模型研究. 光谱学与光谱分析, 33(7): 1857-1862 [DOI: 10.3964/j.issn.1000-0593(2013)07-1857-06http://dx.doi.org/10.3964/j.issn.1000-0593(2013)07-1857-06]
Ohmura A, Dutton E G, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker R, Whitlock C H, Dehne K and Wild M. 1998. Baseline surface radiation network (BSRN/WCRP): New precision radiometry for climate research. Bulletin of the American Meteorological Society, 79(10): 2115-2136 [DOI: 10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2http://dx.doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2]
Running S W, Baldocchi D D, Turner D P, Gower S T, Bakwin P S and Hibbard K A. 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 70(1): 108-127 [DOI: 10.1016/S0034-4257(99)00061-9http://dx.doi.org/10.1016/S0034-4257(99)00061-9]
Schmid H P and Lloyd C R. 1999. Spatial representativeness and the location bias of flux footprints over inhomogeneous areas. Agricultural and Forest Meteorology, 93(3): 195-209 [DOI: 10.1016/S0168-1923(98)00119-1http://dx.doi.org/10.1016/S0168-1923(98)00119-1]
Tan B, Hu J N, Zhang P, Huang D, Shabanov N, Weiss M, Knyazikhin Y and Myneni R B. 2005. Validation of moderate resolution imaging spectroradiometer leaf area index product in croplands of Alpilles, France. Journal of Geophysical Research: Atmospheres, 110(D1): D01107 [DOI: 10.1029/2004JD004860http://dx.doi.org/10.1029/2004JD004860]
Tang S H, Zhu Q J and Sun R. 2006. Large-scale leaf area index inversion algorithm based on directional reflectivity and its verification. Progress in Natural Science, 16(3): 331-337
唐世浩, 朱启疆, 孙睿. 基于方向反射率的大尺度叶面积指数反演算法及其验证. 自然科学进展, 16(3): 331-337 [DOI: 10.3321/j.issn:1002-008X.2006.03.012http://dx.doi.org/10.3321/j.issn:1002-008X.2006.03.012]
Wang J H, Ge Y, Heuvelink G B M and Zhou C H. 2014. Spatial sampling design for estimating regional GPP with spatial heterogeneities. IEEE Geoscience and Remote Sensing Letters, 11(2): 539-543 [DOI: 10.1109/LGRS.2013.2274453http://dx.doi.org/10.1109/LGRS.2013.2274453]
Wang J H, Ge Y, Heuvelink G B M and Zhou C H. 2015. Upscaling in situ soil moisture observations to pixel averages with spatio-temporal geostatistics. Remote Sensing, 7(9): 11372-11388 [DOI: 10.3390/rs70911372http://dx.doi.org/10.3390/rs70911372]
Wu H, Jiang X G, Xi X H, Li C R and Li Z L. 2009. Comparison and analysis of two general scaling methods for remotely sensed information. Journal of Remote Sensing, 13(2): 183-189
吴骅, 姜小光, 习晓环, 李传荣, 李召良. 2009. 两种普适性尺度转换方法比较与分析研究. 遥感学报, 13(2): 183-189 [DOI: 10.11834/jrs.20090235http://dx.doi.org/10.11834/jrs.20090235]
Wu X D, Wen J G, Xiao Q, You D Q, Liu Q and Lin X W. 2018. Forward a spatio-temporal trend surface for long-term ground-measured albedo upscaling over heterogeneous land surface. International Journal of Digital Earth, 11(5): 470-484 [DOI: 10.1080/17538947.2017.1334097http://dx.doi.org/10.1080/17538947.2017.1334097]
Xu B D, Li J, Liu Q H, Xin X Z, Zeng Y L and Yin G F. 2015. Review of methods for evaluating representativeness of ground station observations. Journal of Remote Sensing, 19(5): 703-718
徐保东, 李静, 柳钦火, 辛晓洲, 曾也鲁, 尹高飞. 2015. 地面站点观测数据代表性评价方法研究进展. 遥感学报, 19(5): 703-718 [DOI: 10.11834/jrs.20154178http://dx.doi.org/10.11834/jrs.20154178]
Zeng Y L, Li J and Liu Q H. 2012. Global LAI ground validation dataset and product validation frameworl: a review. Advances in Earth Science, 27(2): 165-174
曾也鲁, 李静, 柳钦火. 2012. 全球LAI地面验证方法及验证数据综述. 地球科学进展, 27(2): 165-174 [DOI: 10.11867/j.issn.1001-8166.2012.02.0165http://dx.doi.org/10.11867/j.issn.1001-8166.2012.02.0165]
相关作者
相关机构