简缩极化SAR数据支持的森林地上生物量反演
Retrieval of Forest Aboveground Biomass via Compact Polarimetric SAR Data
- 2023年 页码:1-11
网络出版日期: 2023-03-15
DOI: 10.11834/jrs.20232363
扫 描 看 全 文
浏览全部资源
扫码关注微信
网络出版日期: 2023-03-15 ,
扫 描 看 全 文
赵含,张王菲,姬永杰,韩宗涛.XXXX.简缩极化SAR数据支持的森林地上生物量反演.遥感学报,XX(XX): 1-11
Zhao Han,Zhang Wangfei,ji Yongjie,Han Zongtao. XXXX. Retrieval of Forest Aboveground Biomass via Compact Polarimetric SAR Data. National Remote Sensing Bulletin, XX(XX):1-11
简缩极化(Compact Polarimetry, CP)SAR作为一种国内外学者高度关注的新型SAR,目前鲜有研究将其应用在森林地上生物量(Above Ground Biomass, AGB)反演研究中。在全球气候变化及“双碳”目标下,森林AGB的精确反演是当下亟待解决的热点问题。为探究CP SAR数据在森林AGB反演中的可行性,以宜良小哨林场为研究区,提取水平线性CP Stokes1模式、垂直线性CP Stokes2模式、π/4线性(π/4 Transmit and Dual Orthogonal Linear Receive)模式及CTLR(Circular Transmit and Dual Orthogonal Linear Receive)模式的4种CP SAR数据,并基于波的二分性原理,分别提取了各种模式的若干SAR参数,利用基于快速迭代特征选择的k最近邻(KNN-FIFS)算法开展了研究。研究结果表明:基于CTLR模式的森林AGB反演结果最优,R
2
= 0.52,RMSE = 13.02 t/hm
2
;此外,联合4组CP SAR数据的森林AGB反演结果精度有明显提升:R
2
= 0.58,RMSE = 12.16 t/hm
2
。KNN-FIFS适合于采用CP SAR参数进行森林AGB反演,其反演结果与采用全极化SAR数据进行反演的差别并不明显。提取的CP SAR参数中,线极化度
<math id="M1"><msub><mrow><mi>m</mi></mrow><mrow><mi>l</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104171&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104170&type=
2.96333337
3.21733332
,倾斜角45度或-45度时的线极化分量功率值
<math id="M2"><msub><mrow><mi>g</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104173&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104172&type=
2.70933342
3.89466691
等特征在森林AGB反演中表现出较高的适用性,说明其能更好的表征森林信息。
Objective Compact Polarimetric synthetic aperture radar (CP SAR) is a new type SAR and it attracts most researchers especially on the application of CP SAR
however
few studies have been explored in the application of forest aboveground biomass (AGB) retrieval using CP SAR information. Under the global climate change and the goals of achieving peak carbon emissions and carbon neutrality
the accurate inversion of forest AGB become urgent in recent years. The paper aims to explore the feasibility of CP SAR data applied in forest AGB inversion.Method In this study
we took Xiaoshao Forest Farm in Yiliang county as the test site
using simulated CP SAR data from quad polarimetric GF-3 data with four modes
Stokes1 mode (Stokes related parameters were extracted from horizontal Transmit and Dual Orthogonal Linear Receive)
Stokes2 mode (Stokes related parameters were extracted from vertical Transmit and Dual Orthogonal Linear Receive)
the π/4 linear mode (π/4 Transmit and Orthogonal Linear Receive)
and CTLR mode (Circular Transmit and Dual Orthogonal Linear Receive) mode to explore the potential of CP SAR data in forest AGB estimation. First
several SAR parameters of various modes were extracted based on the theory of wave dichotomy
respectively
then the k Nearest Neighbor algorithms with Fast Iterative Feature Selection(KNN-FIFS)method were applied to estimate the forest AGB in the study area. Finally
the accuracy of the KNN-FIFS inversion results were verified using the LOOCV (Leave-One-Out-Cross-Validation) methods.Result R
2
= 0.28 and RMSE = 16.36 t/hm
2
were acquired for the forest AGB estimation using Stokes1 mode and the corresponding optimal feature combination was
γ
、
<math id="M3"><msub><mrow><mi>μ</mi></mrow><mrow><mi>l</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104175&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104174&type=
2.45533323
3.72533321
、
<math id="M4"><mi>δ</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104285&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104284&type=
1.60866666
2.28600001
; for Stokes2 mode
R
2
= 0.35 and RMSE = 14.96 t/hm
2
the corresponding optimal feature combination was
P
2
、
γ
、
m
1
、
P
1
; Compared with Stokes1and Stokes2 modes
the similar performance was shown in π/4 mode for forest AGB estimation
the R
2
value was 0.34 while RMSE =15.21 t/hm
2
and the corresponding optimal feature combination is
<math id="M5"><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104179&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104178&type=
3.04800010
3.04800010
、
<math id="M6"><msub><mrow><mi>m</mi></mrow><mrow><mi>l</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104281&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104280&type=
3.04800010
3.04800010
、
vs
1
、
<math id="M7"><msub><mrow><mi>μ</mi></mrow><mrow><mi mathvariant="normal">c</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104273&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104182&type=
2.70933342
3.72533321
、
<math id="M8"><msub><mrow><mi>g</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104275&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104274&type=
2.70933342
3.72533321
; Among four CP SAR modes
best performance of the forest AGB inversion was shown in CTLR mode with R
2
= 0.52
RMSE = 13.02 t/hm
2
and the corresponding optimal feature combination is
<math id="M9"><msub><mrow><mi>m</mi></mrow><mrow><mi>l</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104281&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104280&type=
3.04800010
3.04800010
、
<math id="M10"><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>R</mi><mi>L</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msubsup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104279&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104278&type=
4.06400013
3.21733332
. The forest AGB inversion result combining 4 sets of CP SAR parameters showed obvious improvement with R
2
= 0.58
RMSE = 12.16 t/hm
2
.Conclusion The CTLR CP SAR mode performed best in forest AGB estimation in the four CP SAR mode
when the parameters extracted from four CP SAR modes were combined and applied forest AGB estimation
the improvement of inversion result is obvious. KNN-FIFS is suitable for forest AGB estimation via CP SAR parameters
there is no obvious difference between the estimation results estimated using CTLR CP SAR data and quad polarimetric SAR data. Among all the extracted CP SAR parameters
the degree of linear polarization (
<math id="M11"><msub><mrow><mi>m</mi></mrow><mrow><mi>l</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104281&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104280&type=
3.04800010
3.04800010
)
and the power of the linear polarization component at a tilt angle of 45 degrees or 135 degrees (
<math id="M12"><msub><mrow><mi>g</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104283&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104282&type=
2.70933342
3.72533321
) show best performance in the forest AGB estimation since both of them are selected in all the four modes as the optimized features. It revealed that they can better characterize the forest AGB changes. Meanwhile
the parameters that can reflect the forest density to a certain extent (
vs
1
)
the parameters that reflect the characteristics of the forest scattering direction (
<math id="M13"><mi>δ</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104285&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41104284&type=
1.60866666
2.28600001
)
and the parameters that represent the degree of forest depolarization all have good performance in the forest AGB inversion.
森林AGBGF-3Stokes简缩极化SARKNN-FIFS
Forest AGBGF-3StokesCP SARKNN-FIFS
Born M, Wolf E. 1999. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. Cambridge U.K.: Cambridge Univ. Press.
Cloude S R, Goodenough D G, Chen H. 2012. Compact Decomposition Theory. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 9(1):28-32. [DOI: 10.1109/LGRS.2011.2158983http://dx.doi.org/10.1109/LGRS.2011.2158983]
Dong G W, Yang J, Peng Y N, et al. 2003. Forest characteristic detection with Pol-SAR. Journal of Tsinghua University(Science and Technology), (07):953-956.
董贵威, 杨健, 彭应宁, 等. 2003. 极化SAR遥感中森林特征探测. 清华大学学报(自然科学版), (07):953-956. [DOI:10.16511/j.cnki.qhdxxb.2003.07.024http://dx.doi.org/10.16511/j.cnki.qhdxxb.2003.07.024]
F. J. Charbonneau, B. Brisco, R. K. Raney, et al. 2010. Compact polarimetry overview and applications assessment. Canadian Journal of Remote Sensing, 36(sup2):298-315. [DOI: 10.5589/ m10-062http://dx.doi.org/10.5589/m10-062]
Han Z T, Jiang H, Wang W, et al. 2018. KNN-FIFS estimation of forest above-ground biomass based on multi-source remote sensing. Forestry Science, 54(09):70-79.
韩宗涛, 江洪, 王威, 等. 2018. 基于多源遥感的森林地上生物量KNN-FIFS估测. 林业科学, 54(09):70-79. [DOI: CNKI:SUN:LYKE.0.2018-09-009http://dx.doi.org/CNKI:SUN:LYKE.0.2018-09-009]
Huang C D, Zhang J, Yang W Q, et al. 2008. Carbon storage dynamics of forest vegetation in Sichuan Province and Chongqing area. Acta Ecologica Sinica, (03):966-75.
黄从德, 张键, 杨万勤, 等. 2008. 四川省及重庆地区森林植被碳储量动态. 生态学报, (03):966-75. [DOI: 10.3321/j.issn:1000-0933.2008.03.008http://dx.doi.org/10.3321/j.issn:1000-0933.2008.03.008]
Huang P P, Tan L L. 2011. Comparison of vegetation height retrieval performance for different modes of Compact polarimetric interferometric SAR. Inner Mongolia Prataculture. 23(01):35-37.
黄平平, 谈璐璐. 2011. 不同模式简缩极化干涉SAR的植被高度反演性能比较. 内蒙古草业, 23(01):35-37. [DOI: 10.3969/j.issn.2095-5952.2011.01.007http://dx.doi.org/10.3969/j.issn.2095-5952.2011.01.007]
Izumi Y, Demirci S, Bin Baharuddin M, et al. 2017. Analysis of dual-and full-circular polarimetric SAR modes for rice phenology monitoring: An experimental investigation through ground-based measurements[J]. Applied Sciences, 7(4): 368. [doi: 10.3390/app 7040368http://dx.doi.org/10.3390/app7040368.]
Li Y, Zhang W F, Cui J B, et al. 2020. Optics and SAR data supported by parameter optimization to retrieve forest above-ground biomass. Journal of Beijing Forestry University, 42(10):11-19.
李云, 张王菲, 崔鋆波, 等. 2020. 参数优选支持的光学与SAR数据森林地上生物量反演研究. 北京林业大学学报, 42(10):11-19. [DOI: 10.12171/j.1000-1522.20190389http://dx.doi.org/10.12171/j.1000-1522.20190389]
Li Z Y, et al. 2019. Synthetic Aperture Radar Forest Parameter Retrieval Technology and Method. Beijing:Science Press.
李增元等. 2019. 合成孔径雷达森林参数反演技术与方法. 北京:科学出版社.
Raney R K. 2007. Hybrid-Polarity SAR Architecture. IEEE Transactions on Geoscience and Remote Sensing, 45(11): 3397-3404. [DOI: 10.1109/TGRS.2007.895883http://dx.doi.org/10.1109/TGRS.2007.895883]
Raney R K. 2019. Hybrid Dual-Polarization Synthetic Aperture Radar. Remote Sensing, 11(13):1521. [DOI: 10.3390/rs11131521http://dx.doi.org/10.3390/rs11131521]
Souyris J C, Imbo P, Fjortoft R, et al. 2005. Compact polarimetry based on symmetry properties of geophysical media: π/4 mode. IEEE Transactions on Geoscience & Remote Sensing, 43(3):634-646. [DOI: 10.1109/tgrs.2004.842486http://dx.doi.org/10.1109/tgrs.2004.842486]
Stacy N. and Preiss M. 2006. Compact polarimetric analysis of X-band SAR Data. Proceedings of the 6th European conference on SAR.
Tan L L, Yang L B, Yang R L. 2010. Research on Vegetation Height Retrieval Technology Based on Synthetic Aperture Radar Reduced Polarization Interference Data. Journal of Electronics & Information Technology, 32(12):2814-2819.
谈璐璐, 杨立波, 杨汝良. 2010. 合成孔径雷达简缩极化干涉数据的植被高度反演技术研究. 电子与信息学报, 32(12):2814-2819. [DOI:10.3724/SP.J.1146.2010.00091http://dx.doi.org/10.3724/SP.J.1146.2010.00091]
Tao Y H. 2012. Significance of forest ecosystem carbon storage research and research progress at home and abroad. Modern Agricultural Science and Technology, (9): 205+212.
陶玉华. 2012. 森林生态系统碳储量研究的意义及国内外研究进展. 现代农业科技, (9):205+212. [DOI: 10.3969/j.issn.1007-5739.2012.09.135http://dx.doi.org/10.3969/j.issn.1007-5739.2012.09.135]
Timothy Dube. 2015. Onisimo Mutanga. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS Journal of Photogrammetry and Remote Sensing, 108. [DOI: 10.1016/j.isprsjprs.2015.06.002http://dx.doi.org/10.1016/j.isprsjprs.2015.06.002]
Truong-Loi ML, Dubois-Fernandez P, Pottier E. 2012. Assessment of forest biomass retrieval from compact-pol SAR data. Canadian Journal of Remote Sensing, 38(4):9. [DOI: 10.5589/m12-037http://dx.doi.org/10.5589/m12-037]
WANG Y J, WANG Robert, Yu We D, et al. 2021. See-Earth: SAR constellation with dense time-series for multi-dimensional environmental monitoring of the earth. Journal of Radars, 10(6): 842–864.
王樱洁, 王宇, 禹卫东, 等. 2021. See-Earth:高频时序多维地球环境监测SAR星座. 雷达学报, 10(6):842–864. [DOI: 10.12000/JR21176http://dx.doi.org/10.12000/JR21176]
Wei X M. 2019. Estimation method of forest above-ground biomass supported by multi-source data. Journal of Wuhan University, 44(9):1385-1390.
魏雪梅. 2019. 多源数据支持下的森林地上生物量估算方法. 武汉大学学报, 44(9):1385-1390. [DOI: 10.13203/j.whugis20190149http://dx.doi.org/10.13203/j.whugis20190149]
Xu L, Zhang H, Wang C, et al. 2020. Research progress in data processing and application of simplified polarized SAR. Journal of Radars, 9(1):55-72.
许璐, 张红, 王超, 等. 2020. 简缩极化SAR数据处理与应用研究进展. 雷达学报, 9(1):55-72. [DOI: 10.12000/JR19106http://dx.doi.org/10.12000/JR19106]
Yang H. 2015. Study on Quantitative Crop Monitoring by Time Series of Fully Polarimetric and Compact Polarimetric SAR Imagery. Chinese Academy of Forestry.
杨浩. 2015. 基于时间序列全极化与简缩极化SAR的作物定量监测研究. 中国林业科学院. [DOI: 10.7666/d.Y2903882http://dx.doi.org/10.7666/d.Y2903882]
Zhang H, Wang C, Liu M, et al. 2015. Polarimetric SAR Theory, Method and Application. Science Press.
张红, 王超, 刘萌, 等. 2015. 极化SAR理论、方法与应用. 科学出版社.
Zhang H, Xie L, Wang C, et al. 2013. Extraction and Application of Compact Polarimetric SAR Data Information. Journal of Image and Graphics, 18(09):1065-1073.
张红, 谢镭, 王超, 等. 2013. 简缩极化SAR数据信息提取与应用. 中国图象图形学报, 18(09):1065-1073. [DOI: 10.11834/jig.20130902http://dx.doi.org/10.11834/jig.20130902]
Zhang S W, Hui G Y, Han Z T, et al. 2019. Estimation of forest above-ground biomass in a large area based on rapid optimization of optical multispectral and SAR remote sensing features.Remote Sensing Technology and Application, 34(5):925-938.
张少伟, 惠刚盈, 韩宗涛, 等. 2019. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测. 遥感技术与应用, 34(5):925-938. [DOI: CNKI:SUN:YGJS.0.2019-05-003http://dx.doi.org/CNKI:SUN:YGJS.0.2019-05-003]
Zhang W F, Wen Z, Zhang Y H, et al. 2020. Feasibility analysis of Stokes parameters in rape growth monitoring. Journal of Wuhan University (Information Science Edition), 45(02):242-249.
张王菲, 文哲, 张亚红, 等. 2020. Stokes参数在油菜长势监测中的可行性分析. 武汉大学学报(信息科学版), 45(02):242-249. [DOI: 10.13203/ j.whugis20180375http://dx.doi.org/10.13203/j.whugis20180375]
Zhang W F, LI Z Y, Chen E X, et al. 2017. Compact polarimetric response of rape (Brassica napus L. ) at C-band: Analysis and growth parameters inversion. Remote Sensing, 9(6):591. [DOI: 10.3390/rs9060591http://dx.doi.org/10.3390/rs9060591]
Zhang W F, Zhang Y X, Yang Y, et al. 2021. Oilseed Rape (Brassica napus L. ) Phenology Estimation by Averaged Stokes-Related Parameters. Remote Sensing, 13(14):2652. [DOI: 10.3390/ rs13142652http://dx.doi.org/10.3390/rs13142652]
Zhang W F, Zhao L X, Li, Y, et al. 2022. Forest Above-Ground Biomass Inversion Using Optical and SAR Images Based on a Multi-Step Feature Optimized Inversion Model. Remote Sensing, 14, 1608. [DOI: 10.3390/rs14071608http://dx.doi.org/10.3390/rs14071608]
Yang Z, Li K, Liu L, et al. 2014. Rice growth monitoring using simulated compact polarimetric C band SAR. Radio Science, 49(12):1300-1315. [DOI: 10.1002/2014RS005498http://dx.doi.org/10.1002/2014RS005498]
相关文章
相关作者
相关机构