中国近海绿潮生物量的卫星遥感估算方法研究
Optical estimation of green tide biomass in the Yellow sea of China with various satellite images
- 2023年 页码:1-17
DOI: 10.11834/jrs.20232535
引用
扫 描 看 全 文
扫 描 看 全 文
引用
唐君,陆应诚,焦俊男,刘建强,胡连波,丁静,邢前国,王福涛,宋庆君,陈艳拢,田礼乔,王心源,刘锦超.XXXX.中国近海绿潮生物量的卫星遥感估算方法研究.遥感学报,XX(XX): 1-17
TANG Jun,LU Yingcheng,JIAO Junnan,LIU Jianqiang,HU Lianbo,DING Jing,XING Qianguo,WANG Futao,Song Qingjun,Chen Yanlong,Tian Liqiao,WANG Xinyuan,LIU Jingchao. XXXX. Optical estimation of green tide biomass in the Yellow sea of China with various satellite images. National Remote Sensing Bulletin, XX(XX):1-17
绿潮生物量是精准量化海洋大型漂浮藻类的关键参数,是反映海洋生态环境变化的有效指标。卫星遥感技术是中国近海绿潮监测的有效技术支撑,光学遥感卫星能为绿潮的精细化定量监测与评估提供数据支持,能实现绿潮的精准识别与量化估算。针对中国海洋一号C/D卫星 (Haiyang-1C/D, HY-1C/D) 海岸带成像仪 (Coastal Zone Imager, CZI) 、美国中分辨率成像光谱仪 (Moderate-resolution Imaging Spectroradiometer, MODIS)、欧洲空间局哨兵2号卫星多光谱成像仪 (Multi Spectral Instrument,MSI)等光学遥感数据特点,基于绿潮生物量变化模拟与观测验证数据,本研究提出了适用于不同光学卫星数据的绿潮生物量估算模型与计算方法,开展了中国近海绿潮生物量光学遥感估算方法研究与交叉验证。结果表明:相较于绿潮像元面积和覆盖面积,绿潮生物量估算结果的不确定性最小,该参数能有效减少面积参数所内含的尺度效应差异,能更准确地用于海洋绿潮的量化与评估。此外,基于CZI和MODIS数据开展2021年中国近海绿潮生物量协同监测应用,有效提高了绿潮生物量监测的精度,详细量化了2021年中国近海绿潮生物量的年内变化,展现了绿潮生物量的精细空间分布格局与变化趋势。多源光学遥感数据开展绿潮生物量遥感估算,对中国近海漂浮藻类的精准、定量、动态监测,具有重要的方法与数据参考意义。
Green tide biomass is a key parameter for accurate quantification of floating macroalgae as well as an effective indicator to reflect the change of marine ecological environment. Optical remote sensing satellites can provide data support for the fine quantitative monitoring and evaluation of green tide, and realize the accurate detection and quantitative estimation of green tide. The Moderate Resolution Imaging Spectroradiometer (MODIS) of National Aeronautics and Space Administration (NASA) of the United States, the Multispectral Instrument (MSI) onboard Sentinel-2 satellites of the European Space Agency, and the Coastal Zone Imager (CZI) onboard China’s HaiYang-1C/D (HY-1C/D) satellites can provide the long time series and high resolution observations for quantifying green tides biomass in the Yellow Sea of China. Based on laboratory measurements of ,U. prolifera, biomass (wet weight) per unit area and the corresponding spectral reflectance, some robust estimation relationships have been established to link biomass per area of green tide to the different optical parameters of floating algae detected from CZI, MSI, and MODIS images, and the cross validation of remote sensing estimation results among different satellite data is also realized. This study shows that this method can effectively reduce the uncertainty in remote sensing monitoring of green tide, especially in the difference of scale effect (caused by spatial resolution) in the spaceborne remotely estimation of green tide, to provide more accurate reference for quantification and assessment of marine ecological environment. Based on the CZI and MODIS data from 2021, the biomass per area (BPA) images of green tide with high temporal and spatial resolution were produced. The co-monitoring application between CZI and MODIS effectively improves the accuracy of green tide biomass monitoring, better reflects the intra-year spatio-temporal variation trend of green tide. Based on multi-source optical remote sensing data, the accurate estimation of green tide biomass has important theoretical and methodological significance for accurate, quantitative and dynamic monitoring of floating algae.
绿潮生物量光学遥感HY-1C/DCZIMODIS
Green tide biomassoptical remote sensingHY-1C/DCZIMODIS
Garcia R A, Fearns P, Keesing J K and Liu D Y. 2013. Quantification of floating macroalgae blooms using the scaled algae index[J]. Journal of Geophysical Research: Oceans, 118(1): 26-42 [DOI:10.1029/2012JC008292http://dx.doi.org/10.1029/2012JC008292]
Hu C M and He M X. 2008. Origin and offshore extent of floating algae in Olympic sailing area[J]. Eos, Transactions American Geophysical Union, 89(33): 302-303 [DOI:10.1029/2008eo330002http://dx.doi.org/10.1029/2008eo330002]
Hu C M, Li D Q, Chen C S, Ge J Z, Muller-Karger F E, Liu J P, Yu F and He M X. 2010. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea[J]. Journal of Geophysical Research: Oceans, 115(C5) [DOI:10.1029/2009JC005561]
Hu C M. 2009. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 113(10): 2118-2129 [DOI:10.1016/j.rse.2009.05.012http://dx.doi.org/10.1016/j.rse.2009.05.012]
Hu L B, Hu C M and He M X. 2017. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea[J]. Remote Sensing of Environment, 192: 217-227 [DOI:10.1016/j.rse.2017.01.037http://dx.doi.org/10.1016/j.rse.2017.01.037]
Hu L B, Zeng K, Hu C M and He M X. 2019. On the remote estimation of Ulva prolifera areal coverage and biomass[J]. Remote sensing of environment, 223: 194-207 [DOI:10.1016/j.rse.2019.01.014http://dx.doi.org/10.1016/j.rse.2019.01.014]
Liu J C, Liu J Q, Ding J and Lu Y C. 2022. A refined imagery algorithm to extract green tide in the Yellow Sea of China from HY-1C CZI measurements[J]. Haiyang Xuebao, 44(5): 1-11
刘锦超, 刘建强, 丁静, 陆应诚. HY-1C卫星CZI载荷的黄海绿潮提取研究[J].海洋学报,2022,44(05):1-11[DOI:10.12284/hyxb2022097http://dx.doi.org/10.12284/hyxb2022097]
Keesing J K, Liu D Y, Fearns P and Garcia R. 2011. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China[J]. Marine pollution bulletin, 62(6): 1169-1182 [DOI:10.1016/j.marpolbul.2011.03.040http://dx.doi.org/10.1016/j.marpolbul.2011.03.040]
Li L, Xing Q G, Li X R, Yu D F, Zhang J and Zou J Q. 2018. Assessment of the impacts from the world's largest floating macroalgae blooms on the water clarity at the west Yellow Sea using MODIS data (2002–2016) [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5): 1397-1402 [DOI:10.1109/JSTARS.2018.2806626http://dx.doi.org/10.1109/JSTARS.2018.2806626]
Liu D Y, Keesing J K, Dong Z J, Zhen Y, Di B P, Shi Y J, Fearns P and Shi P. 2010. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms[J]. Marine Pollution Bulletin, 60(9): 1423-1432 [DOI:10.1016/j.marpolbul.2010.05.015http://dx.doi.org/10.1016/j.marpolbul.2010.05.015]
Liu D Y, Keesing J K, Xing Q G and Shi P. 2009. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China[J]. Marine Pollution Bulletin, 58(6): 888-895 [DOI:10.1016/j.marpolbul.2009.01.013http://dx.doi.org/10.1016/j.marpolbul.2009.01.013]
Liu X Q, Wang Z L and Zhang X L. 2016. A review of the green tides in the Yellow Sea, China[J]. Marine Environmental Research, 119: 189-196 [DOI:10.1016/j.marenvres.2016.06.004http://dx.doi.org/10.1016/j.marenvres.2016.06.004]
Lu T, Lu Y C, Hu L B, Jiao J N, Zhang M W and Liu Y X. 2019. Uncertainty in the optical remote estimation of the biomass of Ulva prolifera macroalgae using MODIS imagery in the Yellow Sea[J]. Optics Express, 27(13): 18620-18627 [DOI:10.1364/OE.27.018620http://dx.doi.org/10.1364/OE.27.018620]
Qi L, Hu C M, Xing Q G and Shang S L. 2016. Long-term trend of Ulva prolifera blooms in the western Yellow Sea[J]. Harmful Algae, 58: 35-44 [DOI:10.1016/j.hal.2016.07.004http://dx.doi.org/10.1016/j.hal.2016.07.004]
Shi W and Wang M H. 2009. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008[J]. Journal of Geophysical Research: Oceans, 114(C12) [DOI:10.1029/2009jc005513]
Wang M and Hu C. 2016. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations[J]. Remote sensing of environment, 183: 350-367 [DOI:10.1016/j.rse.2016.04.019http://dx.doi.org/10.1016/j.rse.2016.04.019]
Wang X H, Li L, Bao X and Zhao D. 2009. Economic cost of an algae bloom cleanup in China's 2008 Olympic sailing venue[J]. Eos, Transactions American Geophysical Union, 90(28): 238-239 [DOI:10.1029/2009eo280002http://dx.doi.org/10.1029/2009eo280002]
Xing Q G, Hu C M, Tang D L, Tian L Q, Tang S L, Wang X H, Lou M J and Gao X L. 2015. World’s largest macroalgal blooms altered phytoplankton biomass in summer in the Yellow Sea: satellite observations[J]. Remote Sensing, 7(9): 12297-12313 [DOI:10.3390/rs70912297http://dx.doi.org/10.3390/rs70912297]
Xing Q G and Hu C M. 2016. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique[J]. Remote sensing of Environment, 178: 113-126 [DOI:10.1016/j.rse.2016.02.065http://dx.doi.org/10.1016/j.rse.2016.02.065]
Xu Q, Zhang H Y, Ju L and Chen M X. 2014. Interannual variability of Ulva prolifera blooms in the Yellow Sea[J]. International Journal of Remote Sensing, 35(11-12): 4099-4113 [DOI:10.1080/01431161.2014.916052http://dx.doi.org/10.1080/01431161.2014.916052]
相关作者
相关机构