联合TanDEM-X DEM与Senitnel-2多光谱数据的林下地形提取
Sub-canopy topography extraction via TanDEM-X DEM combined Sentinel-2 multispectral data
- 2023年 页码:1-11
网络出版日期: 2023-05-16
DOI: 10.11834/jrs.20232574
扫 描 看 全 文
浏览全部资源
扫码关注微信
网络出版日期: 2023-05-16 ,
扫 描 看 全 文
刘志卫,赵蓉,朱建军,付海强,周璀,周亦.XXXX.联合TanDEM-X DEM与Senitnel-2多光谱数据的林下地形提取.遥感学报,XX(XX): 1-11
LIU Zhiwei,ZHAO Rong,ZHU Jianjun,FU Haiqiang,ZHOU Cui,ZHOU Yi. XXXX. Sub-canopy topography extraction via TanDEM-X DEM combined Sentinel-2 multispectral data. National Remote Sensing Bulletin, XX(XX):1-11
针对植被覆盖区TanDEM-X DEM无法描述精细化林下地形的问题,本文提出了一种联合TanDEM-X DEM和Sentinel-2多光谱数据的林下地形提取方法。为了实现该方法,首先将TanDEM-X DEM和Sentinel-2的多波段信息作为输入变量、高精度林下地形数据(LVIS测高数据)作为输出变量,通过随机森林拟合方法构建林下地形预测模型;之后,利用得到的训练模型实现无参考数据区域的林下地形获取。为了验证提出的方法,本文采用位于非洲加蓬的两个典型实验区进行实验验证。实验结果表明,提出的方法能够有效地改正TanDEM-X DEM中包含的森林高度偏差,并提取林下地形信息;相较于原始TanDEM-X DEM,本文方法所提取的地形精度在两个实验区分别提升了76%和63%。此外,实验结果也表明,本文方法得到的林下地形结果保持了较为完整的地形纹理,可以较好的描述林下地形细节。本研究为采用TanDEM-X DEM产品获取大范围林下地形提供了一种可行的方案。
Digital Elevation Model (DEM) is one of the most important data sources for a variety of scientific studies and applications. Currently
one important data source for large-scale DEM generation originates from the TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) mission
which provides bistatic Interferometric Synthetic Aperture Radar (InSAR) data with high spatial resolution (12 m) at the global scale. However
in forest areas
the retrieval of the sub-canopy topography using TanDEM-X InSAR data still faces notable challenges because of the effects of the forest-scattering process on InSAR height measurements and the limited penetration capability of X-band’s signals
which causes the measured elevation to be between the ground surface and the top of the tree canopy. Although SAR signals with longer wavelength has stronger penetrability in the forest layer
sub-canopy topography still cannot be measured due to the volume-scattering effect from tree canopy or trunks. In addition
the missing space-borne PolInSAR or TomoSAR data poses another limitation for the sub-canopy topography estimation. In this paper
a new method to extract sub-canopy topography over forested areas is proposed
which uses a combination of TanDEM-X DEM and Sentinel-2 multispectral data. To achieve this goal
TanDEM-X DEM and the multi-band data of Sentinel-2 are regarded as the input variables
while the high-precision ground elevation data was considered as the target variable; subsequently
random forest fitting method is used to construct the sub-canopy topography estimation predictive model. According to the obtained model
we can extract a large-scale sub-canopy topography over the areas without reference data. The results show that
evaluated over two different forest sites
in comparison with the original TanDEM-X DEM
the sub-canopy topography derived via the proposed method has an RMSE of 3.7 m and 7.78 m for the two forest sites respectively
which represents an improvement of approximately 76% and 63%
respectively. Furthermore
the experimental results also show that the resultant sub-canopy topography can maintain more detailed topographic information. All these findings indicate that
based on publicly available data
the proposed method has a greater potential for extracting large-scale sub-canopy topography at high spatial resolution.
TanDEM-XSentinel-2机器学习数字高程模型林下地形
TanDEM-XSentinel-2machine learningDigital Elevation Model (DEM)sub-canopy topography
Baugh C A, Bates P D, Schumann G, Trigg M A. 2013. SRTM vegetation removal and hydrodynamic modeling accuracy. Water Resources Research, 49(9): 5276-5289 [DOI: 10.1002/wrcr.20412http://dx.doi.org/10.1002/wrcr.20412]
Blair J B, Rabine D L, Hofton M A. 1999. The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 115-122 [DOI: 10.1016/S0924-2716(99)00002-7http://dx.doi.org/10.1016/S0924-2716(99)00002-7]
Cai S X, Yue L W, Yin C, Qiu Z H. 2022. Accuracy evaluation of multi-source DEM data based on analysis of vegetation penetration rate in forest area. Journal of Remote Sensing, 26(11): 2268-2281
蔡士雪, 岳林蔚, 尹超, 邱中航. 2022. 顾及林区植被穿透率的多源DEM数据精度评价. 遥感学报, 26(11): 2268-2281 [DOI: 10.11834/jrs.20210221http://dx.doi.org/10.11834/jrs.20210221]
Chen H. 2020. Studying on DEM generated by DSM vegetation filtering. Nanjing Normal University
陈寒. 2020. DSM植被滤波生成DEM方法研究.南京师范大学 [DOI: 10.27245/d.cnki.gnjsu.2020.000641http://dx.doi.org/10.27245/d.cnki.gnjsu.2020.000641]
Dadiyorto W, Shie-Yui L, Yabin S, Chi D doan. 2016. An innovative approach to improve SRTM DEM using multispectral imagery and artificial neural network. Journal of Advances in Modeling Earth Systems, 8(2): 691-702 [DOI: 10.1002/2015MS000536http://dx.doi.org/10.1002/2015MS000536]
Fakhri F, Gkanatsios I. 2021. Integration of Sentinel-1 and Sentinel-2 data for change detection: A case study in a war conflict area of Mosul city. Remote Sensing Applications Society and Environment, 22(2): 1-14 [DOI: 10.1016/j.rsase.2021.100505http://dx.doi.org/10.1016/j.rsase.2021.100505]
Farr T G, Kobrick M. 2000. Shuttle radar topography mission produces a wealth of data. Eos Transactions American Geophysical Union, 81(48): 583-585 [DOI: 10.1029/EO081i048p00583http://dx.doi.org/10.1029/EO081i048p00583]
Frampton W J, Dash J, Watmough G, Milton E J. 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82: 83-92 [DOI: 10.1016/j.isprsjprs.2013.04.007http://dx.doi.org/10.1016/j.isprsjprs.2013.04.007]
Fu H Q, Wang C C, Zhu J J, Xie Q H, Zhang B. 2016. Estimation of pine forest height and underlying DEM using multi-baseline P-Band PolInSAR Data. Remote Sensing, 8(10): 820 [DOI: 10.3390/rs8100820http://dx.doi.org/10.3390/rs8100820]
Gallant J C, Read A M. 2016. A near-global bare-Earth DEM from SRTM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: XLI-B4. Prague, Czech Republic: 137-141 [DOI: 10.5194/isprsarchives-XLI-B4-137-2016http://dx.doi.org/10.5194/isprsarchives-XLI-B4-137-2016]
Gascon F, Thépaut O, Jung M, Francesconi B, Louis J, Lonjou V, Lafrance B, Massera S, Gaudelvacaresse A, Languille F. 2017. Copernicus Sentinel-2 calibration and products validation Status. Remote Sensing, 9(6): 584 [DOI: 10.3390/rs9060584http://dx.doi.org/10.3390/rs9060584]
Ham J, Chen Y, Crawford M M, Ghosh J. 2005. Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43(3): 492-501 [DOI: 10.1109/TGRS.2004.842481http://dx.doi.org/10.1109/TGRS.2004.842481]
Hofton M, Blair J, Rabine D, Brooks C, Cornejo H. 2017. Canopy height and structure measurements of Gabon from medium-footprint waveform lidar. IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, TX, USA. [DOI: 10.1109/IGARSS.2017.8127952http://dx.doi.org/10.1109/IGARSS.2017.8127952]
Kim D E, Liong S Y, Gourbesville P, Andres L, Liu J D. 2020. Simple-Yet-Effective SRTM DEM improvement scheme for dense urban cities using ANN and remote sensing data: application to flood modeling. Water, 12(3): 816 [DOI: 10.3390/w12030816http://dx.doi.org/10.3390/w12030816]
Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M. 2007. TanDEM-X: A Satellite formation for high-resolution SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 45(11): 3317-3341 [DOI: 10.1109/TGRS.2007.900693http://dx.doi.org/10.1109/TGRS.2007.900693]
Krieger G, Zink M, Bachmann M, Bräutigam B, Schulze D, Martone M, Rizzoli P, Steinbrecher U, Antony J W, De Zan F, others. 2013. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronautica, 89: 83-98 [DOI: 10.1016/j.actaastro.2013.03.008http://dx.doi.org/10.1016/j.actaastro.2013.03.008
Lai C G, Chen X H, Zhao S W, Wang Z L, Wu X S. 2015. A flood risk assessment model based on Random Forest and its application. Journal of Hydraulic Engineering, 46(01): 58-66
赖成光, 陈晓宏, 赵仕威, 王兆礼, 吴旭树. 2015. 基于随机森林的洪灾风险评价模型及其应用.水利学报, 46(01): 58-66 [DOI: 10.13243/j.cnki.slxb.2015.01.008http://dx.doi.org/10.13243/j.cnki.slxb.2015.01.008]
Lan J J, Yu H Y, Chen L, Ma H H, Zhang H Y. 2020. Scale effect of airborne LiDAR DEM in watershed hydrological analysis and simulation. Bulletin of Surveying and Mapping, 4: 40-46
兰进京, 于海洋, 陈琳, 马慧慧, 张慧勇. 2020. 机载LiDAR DEM在流域水文分析与模拟中的尺度效应. 测绘通报, 4: 40-46 [DOI: 10.13474/j.cnki.11-2246.2020.0109http://dx.doi.org/10.13474/j.cnki.11-2246.2020.0109]
Li W L, Wang C S, Zhu W. 2020. Error spatial distribution characteristics of TanDEM-X 90 m DEM over China. Geo-Information Science, 22(12): 2277-2288
李文梁, 汪驰升, 朱武. 2020. 中国大陆地区TanDEM-X 90 m DEM误差空间分布特征. 地球信息科学学报, 22(12): 2277-2288 [DOI: 10.12082/dqxxkx.2020.190739http://dx.doi.org/10.12082/dqxxkx.2020.190739]
Li W, Niu Z, Shang R, Qin Y C, Wang L, Chen H Y. 2020. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. International Journal of Applied Earth Observation and Geoinformation, 92: 102163 [DOI: 10.1016/j.jag.2020.102163http://dx.doi.org/10.1016/j.jag.2020.102163]
Liu L. 2019. The 30-m seamless DEM reconstruction based on multi-source data fusion. Wuhan Universtiy
刘露. 2019. 基于多源数据融合的30米无缝DEM产品重建. 武汉大学 [DOI: 10.27379/d.cnki.gwhdu.2019.000424http://dx.doi.org/10.27379/d.cnki.gwhdu.2019.000424]
Liu L J. 2022. Inversion of forest canopy height in Yunnan Province based on spaceborne lidar data and optical remote sensing data. Yunan: Yunan Normal University
刘丽娟. 2022. 基于星载激光雷达数据和光学遥感数据的云南省森林冠层高度反演研究.云南师范大学 [DOI: 10.27459/d.cnki.gynfc.2022.000334http://dx.doi.org/10.27459/d.cnki.gynfc.2022.000334]
Liu Y J, Zhu J J, Fu H Q. 2020. Underlying topography estimation over forest using dual-polarized interferometric SAR data. Engineering of Surveying and Mapping, 29(5): 20-26
刘雅佳, 朱建军, 付海强. 2020. 双极化干涉SAR林下地形反演.测绘工程, 29(05): 20-26 [DOI: 10.19349/j.cnki.issn1006-7949.2020.05.004http://dx.doi.org/10.19349/j.cnki.issn1006-7949.2020.05.004]
Liu Z W, Zhu J J, Fu H Q, Zhou C, Zuo T Y. 2020. Evaluation of the vertical accuracy of open global DEMs over steep terrain regions using ICESat data: a case study over Hunan Province, China. Sensors, 20(17): 4865 [DOI: 10.3390/s20174865http://dx.doi.org/10.3390/s20174865]
Lu W Q. 2019. The method of underlying topography estimation over forest areas based on Polarimetric SAR interferometry. Shandong University of Science and Technology (卢文青. 2019. 极化干涉SAR林下地形估计方法. 山东科技大学)
Luo H, Guo S Y, Bao W M. 2016. Random forest model and application of arch dam’s deformation monitoring and prediction. South-to-North Water Transfers and Water Science & Technology,14(6):116-121
罗浩,郭盛勇,包为民.2016.拱坝变形监测预报的随机森林模型及应用.南水北调与水利科技, 14(06):116-121 [DOI: 10.13476/j.cnki.nsbdqk.2016.06.020http://dx.doi.org/10.13476/j.cnki.nsbdqk.2016.06.020]
Main-Knorn M, Pflug B, Louis J, Debaecker V, Gascon F. 2017. Sen2Cor for Sentinel-2. Image and Signal Processing for Remote Sensing: 10427. Warsaw, Poland. [DOI: 10.1117/12.2278218http://dx.doi.org/10.1117/12.2278218]
Meadows M, Wilson M. 2021. A comparison of machine learning approaches to improve free topography data for flood modelling. Remote Sensing, 13(2): 275 [DOI: 10.3390/rs13020275http://dx.doi.org/10.3390/rs13020275]
O’Loughlin F E, Paiva R C, Durand M, Alsdorf D, Bates P. 2016. A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sensing of Environment, 182: 49-59 [DOI: 10.1016/j.rse.2016.04.018http://dx.doi.org/10.1016/j.rse.2016.04.018]
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, others. 2011. Scikit-learn: Machine learning in Python. Journal of machine Learning research, 12: 2825-2830
Peng X, Wang Y J, Long S L, Pan X, Xie Q H, Du Y N, Fu H Q, Zhu J J, Li X W. 2021. Underlying topography inversion using TomoSAR based on non-Local means for an L-Band airborne dataset. Remote Sensing, 13(15): 2926 [DOI: 10.3390/rs13152926http://dx.doi.org/10.3390/rs13152926]
Prasetyo S Y J, Sulistyo W, Basuki P N, Hartomo K D, Hasiholan B. 2022. Computer model of Tsunami vulnerability using machine learning and multispectral satellite imagery. Bulletin of Electrical Engineering and Informatics, 11(2): 986-997 [DOI: 10.11591/eei.v11i2.3372http://dx.doi.org/10.11591/eei.v11i2.3372]
Quegan S, Toan T L, Chave J, Dall J, Williams M. 2019. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment, 227: 44-60 [DOI: 10.1016/j.rse.2019.03.032http://dx.doi.org/10.1016/j.rse.2019.03.032]
Reuter H I, Nelson A, Jarvis A. 2007. An evaluation of void-filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9-10): 983-1008 [DOI: 10.1080/13658810601169899http://dx.doi.org/10.1080/13658810601169899]
Rizzoli P, Martone M, Gonzalez C, Wecklich C, Tridon D B, Brutigam B, Bachmann M, Schulze D, Fritz T, Huber M. 2017. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS Journal of Photogrammetry and Remote Sensing, 132: 119-139 [DOI: 10.1016/j.isprsjprs.2017.08.008http://dx.doi.org/10.1016/j.isprsjprs.2017.08.008]
Rossi C, Gonzalez F R, Fritz T, Yague-Martinez N, Eineder M. 2012. TanDEM-X calibrated raw DEM generation. ISPRS Journal of Photogrammetry and Remote Sensing, 73: 12-20 [DOI: 10.1016/j.isprsjprs.2012.05.014http://dx.doi.org/10.1016/j.isprsjprs.2012.05.014]
Roy D P, Jian L, Zhang H K, Lin Y, Huang H, Li Z. 2017. Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sensing of Environment, 199: 25-38 [DOI: 10.1016/j.rse.2017.06.019http://dx.doi.org/10.1016/j.rse.2017.06.019]
Schlund M, Baron D, Magdon P, Erasmi S. 2019. Canopy penetration depth estimation with TanDEM-X and its compensation in temperate forests. ISPRS Journal of Photogrammetry and Remote Sensing, 147: 232-241 [DOI: 10.1016/j.isprsjprs.2018.11.021http://dx.doi.org/10.1016/j.isprsjprs.2018.11.021]
Tang X M, Li S J, Li T, Gao Y D, Zhang S B, Chen Q F, Zhang X. 2021. Review on global digital elevation products. Journal of Remote Sensing, 25(01): 167-181
唐新明, 李世金, 李涛, 高延东, 张书毕, 陈乾福, 张祥. 2021. 全球数字高程产品概述. 遥感学报, 2021, 25(01): 167-181 [DOI: 10.11834/jrs.20210210http://dx.doi.org/10.11834/jrs.20210210]
Wang H Q, Fu H Q, Zhu J J, Liu Z W, Zhang B, Wang C C, Li Z W, Hu J, Yu Y N. 2021. Estimation of subcanopy topography based on single-baseline TanDEM-X InSAR data. Journal of Geodesy, 95(7): 1-19 [DOI: 10.1007/s00190-021-01519-3http://dx.doi.org/10.1007/s00190-021-01519-3]
Wang Y, Zhang Z Y, Ni W J, Liu J L, Zhang D F. 2017. Comparison of filter algorithms and combination analysis for DEM extracting based on airborne laser scanning point clouds. Journal of Beijing Forestry University, 39(12): 25-35
汪垚, 张志玉, 倪文俭, 刘见礼, 张大凤. 2017. 基于机载LiDAR数据的林下地形提取算法比较与组合分析. 北京林业大学学报, 39(12): 25-35 [DOI: 10.13332/j.1000-1522.20170300http://dx.doi.org/10.13332/j.1000-1522.20170300]
Wecklich C, Gonzalez C, Rizzoli P. 2017. TanDEM-X height performance and data coverage. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA: IEEE: 4088-4091 [DOI: 10.1109/IGARSS.2017.8127898http://dx.doi.org/10.1109/IGARSS.2017.8127898]
Wessel P, Luis J, Uieda L, Scharroo R, Wobbe F, Smith W H, Tian D. 2019. The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564 [DOI: 10.1029/2019GC008515http://dx.doi.org/10.1029/2019GC008515]
Yamazaki D, Sato T, Kanae S, Hirabayashi Y, Bates P D. 2014. Regional flood dynamics in a bifurcating mega delta simulated in a global river model. Geophysical Research Letters, 41(9): 3127-3135 [DOI: 10.1002/2014GL059744http://dx.doi.org/10.1002/2014GL059744]
Yue L W, Shen H F, Yuan Q Q, Liu X G. 2021. A multi⁃source DEM Point⁃Surface fusion model Based on deep belief network. Geomatics and Information Science of Wuhan University, 46(7): 1090-1097
岳林蔚, 沈焕锋, 袁强强, 刘修国. 2021. 基于深度置信网络的多源DEM点面融合模型.武汉大学学报(信息科学版), 46(07): 1090-1097 [DOI: 10.13203/j.whugis20190238http://dx.doi.org/10.13203/j.whugis20190238]
Zebker H A, Goldstein R M. 1986. Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 91(B5): 4993-4999 [DOI: 10.1029/JB091iB05p04993http://dx.doi.org/10.1029/JB091iB05p04993]
Zhang C, Zhu J J, Fu H Q. 2021. Sub-canopy toppography inversion based on ICESat-2 and TanDEM-X DEM. Engineering of Surveying and Mapping, 30(01): 60-65
张晨, 朱建军, 付海强. 2021. 基于ICESat-2数据及TanDEM-X DEM的林下地形反演.测绘工程, 30(01): 60-65 [DOI: 10.19349/j.cnki.issn1006-7949.2021.01.010http://dx.doi.org/10.19349/j.cnki.issn1006-7949.2021.01.010]
Zhao R, Li Z W, Feng G C, Wang Q J, Hu J. 2016. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sensing of Environment, 184: 276-287 [DOI: 10.1016/j.rse.2016.07.019http://dx.doi.org/10.1016/j.rse.2016.07.019]
Zheng T T, Chen C F, Zhang Z J. 2021. A weighted fusion method of SRTM and ASTER based on machine learning. Remote Sensing Information, 36(05): 148-154
郑婷婷, 陈传法, 张照杰. 2021. SRTM与ASTER加权融合的机器学习方法. 遥感信息, 36(05): 148-154 [DOI: 10.3969/j.issn.1000-3177.2021.05.020http://dx.doi.org/10.3969/j.issn.1000-3177.2021.05.020]
Zhou Y S, Lin X, Zheng D H, Li Z W, An B, Wang Y Z, Jiang D C, Su J B, Cao B. 2021. The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya. Science China Earth Sciences, 51(12): 2112-2125
周玉杉, 李新, 郑东海, 李志伟,安宝晟, 汪赢政, 姜德才, 苏建宾, 曹斌. 2021. 气候变化和异常天气共同导致印度杰莫利冰-岩崩塌.中国科学:地球科学, 51(12): 2112-2125 [DOI: 10.1007/s11430- 021-9844-0http://dx.doi.org/10.1007/s11430-021-9844-0]
Zhu J J, Fu H Q, Wang C C. 2018. Methods and research progress of underlying topography estimation over forest areas by InSAR. Geomatics and Information Science of Wuhan University, 43(12): 2030-2038
朱建军, 付海强, 汪长城. 2018. InSAR林下地形测绘方法与研究进展. 武汉大学学报(信息科学版), 43(12): 2030-2038 [DOI: 10.13203/j.whugis20180266http://dx.doi.org/10.13203/j.whugis20180266]
相关作者
相关机构