全球10 m土地覆盖数据在中国首批国际湿地城市的评价与融合
Evaluation and fusion of global 10 m land cover data in first batch of Chinese wetland cities
- 2023年27卷第6期 页码:1334-1347
纸质出版日期: 2023-06-07
DOI: 10.11834/jrs.20233058
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-06-07 ,
扫 描 看 全 文
尹潇淦,蒋卫国,凌子燕,王晓雅,邓雅文.2023.全球10 m土地覆盖数据在中国首批国际湿地城市的评价与融合.遥感学报,27(6): 1334-1347
Yin X G,Jiang W G,Ling Z Y,Wang X Y and Deng Y W. 2023. Evaluation and fusion of global 10 m land cover data in first batch of Chinese wetland cities. National Remote Sensing Bulletin, 27(6):1334-1347
高精度的土地覆盖数据是生态系统监测评估与区域可持续发展的重要研究基础,然而目前较少有研究对较高分辨率土地覆盖数据(10 m)在城市尺度的区域上进行研究。随着国际湿地城市的建立,也需要高质量高精度的土地覆盖数据为相关研究提供信息。本文以中国首批国际湿地城市为研究区,对3套全球10 m土地覆盖数据DW(Dynamic World)、ESA(ESA WorldCover)、ESRI(Esri Land Cover))选择2020年和2021年进行空间一致性分析和精度评价,最后提出基于空间一致性分析与精度评价的融合方法,基于空间一致性分析结果和精度评价结果进行土地覆盖数据集融合以重建生产一套新数据。结果表明:(1)任何两个数据集之间,水体、林地、耕地、建设用地这些类型一致度比较高,而湿地、草地和裸地混淆度比较高。(2)ESRI与DW的空间一致性程度最高,全部一致区域占比最高(60%以上),全部不一致区域占比最低(6%以下)且多分布在沿海沿江,湿地广布的区域,这些区域异质性强,土地覆盖类型复杂。(3)ESA的总体精度最高,DW和ESRI的总体精度较为接近;ESA的湿地类型的精度和分类细节程度相对较高,更适用于城市湿地相关研究。(4)基于空间一致性分析与精度评价的融合方法可以有效融合多源土地覆盖数据,提高具有广泛异质区域数据的精度;本文融合结果的总体精度(80%以上)和Kappa系数均高于3套原数据,可以为国际湿地城市认证及相关研究提供数据支撑。
High-precision land cover data are an important research basis for ecosystem monitoring and assessment and regional sustainable development. However
studies on high-resolution land cover data (10 m) at the urban scale are few. With the establishment of wetland cities
high-quality and high-precision land cover data have become essential to provide information for relevant research.
Taking the first wetland cities in China
as the study area
this study selected three sets of global 10 m land cover data (Dynamic World
ESA WorldCover
and Esri Land Cover) in 2020 and 2021
for spatial consistency evaluation and precision evaluation. First
the consistency and confusion between any two sets of data were calculated using the spatial superposition method
and a spatial consistency distribution map was drawn to analyze the spatial consistency of the three sets of data. Second
the confusion matrix was calculated by constructing verification sample points through visual interpretation to evaluate the accuracy of the three sets of data. Finally
based on the results of the spatial consistency analysis and accuracy evaluation
the land cover data sets were fused to produce a new set of data
and a fusion method based on spatial consistency analysis and accuracy evaluation was proposed.
Results showed that (1) in any two data sets
the consistency of the water
forest
cropland
and urban areas was high
whereas the confusion of the wetland
grassland
and bare areas was high
and (2) the spatial consistency between ESRI and DW was the highest
with the highest proportion of consistent areas (more than 60%) and lowest proportion of inconsistent areas (less than 6%)
which were distributed mainly in areas along the coast and rivers and with extensive wetlands. Such areas had strong heterogeneity and complex land cover types. (3) ESA had the highest overall accuracy
whereas DW and ESRI had a similar overall accuracy. The ESA wetland types had relatively high precision and classification details
which are suitable for urban wetland-related research. (4) Multisource land cover data can be effectively integrated
and the data accuracy of widely heterogeneous regions can be improved using the fusion method based on spatial consistency analysis and accuracy evaluation. The overall accuracy of the fusion results (more than 80%) and kappa coefficient was higher than that of the three original data.
Therefore
the research results can provide data support and auxiliary decision-making support for wetland city certification and related research.
遥感土地覆盖数据集国际湿地城市空间一致性分析精度评价数据融合
remote sensingland cover data setwetland cityspatial consistency assessmentprecision assessmentdata fusion
Bontemps S, Defournya P, Van Bogaert E, Weber J L and Arino O. 2009. GlobCorine—A joint EEA-ESA project for operational land dynamics monitoring at pan-European scale // Proceedings of the 33rd International Symposium on Remote Sensing of Environment. Stresa, Italy.
Brown C F, Brumby S P, Guzder-Williams B, Birch T, Hyde S B, Mazzariello J, Czerwinski W, Pasquarella V J, Haertel R, Ilyushchenko S, Schwehr K, Weisse M, Stolle F, Hanson C, Guinan O, Moore R and Tait A M. 2022. Dynamic world, near real-time global 10 m land use land cover mapping. Scientific Data, 9(1): 251 [DOI: 10.1038/s41597-022-01307-4http://dx.doi.org/10.1038/s41597-022-01307-4]
Buchhorn M, Lesiv M, Tsendbazar N E, Herold M, Bertels L and Smets B. 2020. Copernicus global land cover layers—collection 2. Remote Sensing, 12(6): 1044 [DOI: 10.3390/rs12061044http://dx.doi.org/10.3390/rs12061044]
Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, He C Y, Han G, Peng S, Lu M, Zhang W W, Tong X H and Mills J. 2015. Global land cover mapping at 30m resolution: a POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103: 7-27 [DOI: 10.1016/j.isprsjprs.2014.09.002http://dx.doi.org/10.1016/j.isprsjprs.2014.09.002]
Chen X Y, Lin Y, Zhang M, Yu L, Li H C and Bai Y Q. 2017. Assessment of the cropland classifications in four global land cover datasets: A case study of Shaanxi Province, China. Journal of Integrative Agriculture, 16(2): 298-311 [DOI: 10.1016/S2095-3119(16)61442-9http://dx.doi.org/10.1016/S2095-3119(16)61442-9]
Chen Y C, Shao H, Li Y. 2021. Consistency analysis and accuracy assessment of multi-source land cover products in the Yangtze River Delta. Transactions of the Chinese Society of Agricultural Engineering, 37(6): 142-150
陈逸聪, 邵华, 李杨. 2021. 多源土地覆被产品在长三角地区的一致性分析与精度评价. 农业工程学报, 37(6): 142-150 [DOI: 10.11975/j.issn.1002-6819.2021.06.018http://dx.doi.org/10.11975/j.issn.1002-6819.2021.06.018]
Gong P, Liu H, Zhang M N, Li C C, Wang J, Huang H B, Clinton N E, Ji L Y, Li W Y, Bai Y Q, Chen B, Xu B, Zhu Z L, Yuan C, Suen H P, Guo J, Xu N, Li W J, Zhao Y Y, Yang J, Yu C Q, Wang X, Fu H H, Yu L, Dronova I, Hui F M, Cheng X, Shi X L, Xiao F J, Liu Q F and Song L C. 2019. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6): 370-373 [DOI: 10.1016/j.scib.2019.03.002http://dx.doi.org/10.1016/j.scib.2019.03.002]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Hou W and Hou X Y. 2019. Data fusion and accuracy analysis of multi-source land use/land cover datasets along coastal areas of the maritime silk road. ISPRS International Journal of Geo-Information, 8(12): 557 [DOI: 10.3390/ijgi8120557http://dx.doi.org/10.3390/ijgi8120557]
Jung M, Henkel K, Herold M and Churkina G. 2006. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101(4): 534-553 [DOI: 10.1016/j.rse.2006.01.020http://dx.doi.org/10.1016/j.rse.2006.01.020]
Karra K, Kontgis C, Statman-Weil Z, Mazzariello J C, Mathis M M and Brumby S P. 2021. Global land use / land cover with sentinel 2 and deep learning//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 4704-4707 [DOI: 10.1109/IGARSS47720.2021.9553499http://dx.doi.org/10.1109/IGARSS47720.2021.9553499]
Li Z J, Wang Z Y, Liu X T, Zhu Y D, Wang K and Zhang T G. 2022. Classification and evolutionary analysis of yellow river delta wetlands using decision tree based on time series SAR backscattering coefficient and coherence. Frontiers in Marine Science, 9: 940342. [DOI: 10.3389/fmars.2022.940342http://dx.doi.org/10.3389/fmars.2022.940342]
Liu J, Li P, Tu C R, Wang H J, Zhou Z W, Feng Z X, Shen F and Li Z H. 2022a. Spatiotemporal change detection of coastal wetlands using multi-band SAR coherence and synergetic classification. Remote Sensing, 14(11): 2610. [DOI: 10.3390/rs1411261http://dx.doi.org/10.3390/rs1411261]
Liu P Y, Pei J, Guo H, Tian H F, Fang H J and Wang L, 2022b. Evaluating the accuracy and spatial agreement of five global land cover datasets in the ecologically vulnerable south china karst. Remote Sensing, 14(13): 3090 [DOI: 10.3390/rs14133090http://dx.doi.org/10.3390/rs14133090]
Sulla-Menashe D, Gray J M, Abercrombie S P and Friedl M A. 2019. Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sensing of Environment, 222: 183-194 [DOI: 10.1016/j.rse.2018.12.013http://dx.doi.org/10.1016/j.rse.2018.12.013]
Venter Z S, Barton D N, Chakraborty T, Simensen T and Singh G. 2022. Global 10 m land use land cover datasets: a comparison of dynamic world, world cover and Esri land cover. Remote Sensing, 14(16): 4101 [DOI: 10.3390/rs14164101http://dx.doi.org/10.3390/rs14164101]
Wang J, Yang X M, Wang Z H, Cheng H B, Kang J M, Tang H T, Li Y, Bian Z P and Bai Z L. 2022a. Consistency analysis and accuracy assessment of three global ten-meter land cover products in rocky desertification region—A case study of southwest China. ISPRS International Journal of Geo-Information, 11(3): 202 [DOI: 10.3390/ijgi11030202http://dx.doi.org/10.3390/ijgi11030202]
Wang X Y, Jiang W G, Peng K F, Li Z and Rao P Z. 2022b. A framework for fine classification of urban wetlands based on random forest and knowledge rules: taking the wetland cities of Haikou and Yinchuan as examples. GIScience and Remote Sensing, 59(1): 2144-2163 [DOI: 10.1080/15481603.2022.2152926http://dx.doi.org/10.1080/15481603.2022.2152926]
Yang Y K, Xiao P F, Feng X Z and Li H X. 2017. Accuracy assessment of seven global land cover datasets over China. ISPRS Journal of Photogrammetry and Remote Sensing, 125: 156-173 [DOI: 10.1016/j.isprsjprs.2017.01.016http://dx.doi.org/10.1016/j.isprsjprs.2017.01.016]
Yang Y K, Xiao P F, Feng X Z, Li H X, Chang X and Feng W D. 2014. Comparison and assessment of large-scale land cover datasets in China and adjacent regions. Journal of Remote Sensing, 18(2): 453-475
杨永可, 肖鹏峰, 冯学智, 李海星, 常潇, 冯威丁. 2014. 大尺度土地覆盖数据集在中国及周边区域的精度评价. 遥感学报, 18(2): 453-475 [DOI: 10.11834/jrs.20143055http://dx.doi.org/10.11834/jrs.20143055]
Zanaga D, Van De Kerchove R, Daems D, De Keersmaecker W, Brockmann C, Kirches G, Wevers J, Cartus O, Santoro M, Fritz S, Lesiv M, Herold M, Tsendbazar N E, Xu P P, Ramoino F and Arino O. 2022. ESA WorldCover 10 m 2021 v200 (Version v200) [Data set]. Zenodo[EB/OL]. https://zenodo.org/record/7254221#.ZD-YI_kyY18https://zenodo.org/record/7254221#.ZD-YI_kyY18,2022-10-28
Zanaga D, Van De Kerchove R, De Keersmaecker W, Souverijns N, Brockmann C, Quast R, Wevers J, Grosu A, Paccini A, Vergnaud S, Cartus O, Santoro M, Fritz S, Georgieva I, Lesiv M, Carter S, Herold M, Li L L, Tsendbazar N E, Ramoino F and Arino O. 2021. ESA WorldCover 10 m 2020 v100 (Version v100) [Data set]. Zenodo[EB/OL]. https://zenodo.org/record/5571936#.ZD-W4fkyY18https://zenodo.org/record/5571936#.ZD-W4fkyY18,2021-10-20
Zhang B Y, Wdowinski S, Gann D, Hong S H and Sah J. 2022. Spatiotemporal variations of wetland backscatter: The role of water depth and vegetation characteristics in Sentinel-1 dual-polarization SAR observations. Remote Sensing of Environment, 270: 112864 [DOI: 10.1016/j.rse.2021.112864http://dx.doi.org/10.1016/j.rse.2021.112864]
Zhou Q, Xian G, Horton J, Wellington D, Domke G, Auch R, Li C C and Zhu Z. 2022. Tree regrowth duration map from LCMAP collection 1.0 land cover products in the conterminous United States, 1985-2017. GIScience and Remote Sensing, 59(1): 959-974 [DOI: 10.1080/15481603.2022.2083790http://dx.doi.org/10.1080/15481603.2022.2083790]
相关作者
相关机构