Introduction of the radiometric benchmark satellite being developed in China for remote sensing
- Vol. 24, Issue 6, Pages: 672-680(2020)
Published: 07 June 2020
DOI: 10.11834/jrs.20200011
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 June 2020 ,
扫 描 看 全 文
卢乃锰,丁雷,郑小兵,叶新,李传荣,吕达仁,张鹏,胡秀清,周成虎,尤政,房建成, 龚建雅, 蒋兴伟, 李建军, 马灵玲, 徐娜.2020.中国空间辐射测量基准技术.遥感学报,24(6): 672-680Lu N M,Ding L,Zheng X B,Ye X,Li C R,Lyu D R,Zhang P,Hu X Q,Zhou C H,You Z,Fang J C,Gong J Y,Jiang X W,Li J J,Ma L L and Xu N. 2020. Introduction of the radiometric benchmark satellite being developed in China for remote sensing. Journal of Remote Sensing(Chinese),24(6): 672-680[DOI:10.11834/jrs.20200011]
LU Naimeng,DING Lei,ZHENG Xiaobing,YE Xin,LI Chuanrong,LYU Daren,ZHANG Peng,HU Xiuqing,ZHOU Chenghu,YOU Zheng,et al. 2020. Introduction of the radiometric benchmark satellite being developed in China for remote sensing. Journal of Remote Sensing(Chinese),24(6): 672-680
为确保数据的定量化应用,国际航天遥感大国始终围绕定标技术开展研究,定标精度不断提高。在经历数十年发展之后,受传统的遥感载荷定标系统设计以及地面辐射校正技术理论极限的制约,目前遥感卫星辐射定标停留在太阳反射谱段2%,红外谱段0.2 K的不确定性水平,其精度难以继续提高。进入21世纪,气候变化问题成为全球关注的热点,全球气候变化研究对遥感卫星辐射测量精度提出了前所未有的要求。ASIC
3
(Achieving Satellite Instrument Calibration for Climate Change)报告指出,为了有效检测全球气候变化信号,准确预测气候变化,遥感卫星观测必须长期保持在太阳反射谱段0.3%、红外谱段0.1 K,太阳总辐射0.01%的不确定性水平。为了迎接这一挑战,欧洲和美国相继提出了CLARREO计划和TRUTHS计划,试图通过发射具有超高辐射测量精度的基准卫星,在监测气候变化信号的同时,标定其他遥感卫星,提升全球遥感卫星整体定标精度。同期,中国也提出了空间辐射测量基准技术的概念,并在“十二五”和“十三五”,通过国家高技术研究发展计划和国家重点研发计划持续支持星上相变固定点黑体、空间低温辐射计等尖端技术的研发,进而逐渐形成发射空间辐射测量基准卫星的路线图。从目前发展态势上看,中国有可能成为第一个建立空间辐射测量基准的国家,率先实现卫星平台辐射观测直接向国际单位(SI)的溯源。
In the demand of the quantitative use of satellite data
the accuracy of instrument calibration improved significantly because of the efforts of major satellite operators. However after decades of development
the current premium uncertainty of radiometric calibration of remote sensing satellites stays at 2% in visible
0.5 k in infrared spectrum
due to the design restrains of on-board calibration devices
and also the theoretical limitation of vicarious techniques. Since the beginning of 21 st century
global climate change has become the common concern of international community. Global climate research placed an unprecedented need on the accuracy of radiometric calibration for remote sensing satellites. According to ASIC3 report
in order to detect climate change signals effectively and make accurate predictions
the acceptable uncertainty of radiometric calibration is 0.3% for solar reflective spectrum
0.1 k for infrared spectrum
and 0.01% for total solar irradiance. Living up to the challenge
EU and US proposed TRUTHS and CLARREO plans
with the common goal of launching benchmark satellites. The benchmark satellites
with their extreme accuracy
designed to monitor climate change
could also calibrate other remote sensing satellites in orbit
raising the observation accuracy of the whole global satellite system to a new level. Meanwhile
China also advocated the concept of space radiometric observation benchmark system and launched two five-years projects to develop cutting-edge techniques such as phase-change warm load blackbody and on-orbit cryogenic absolute radiometer etc.
aiming at establishing the absolute radiometric reference in space. With the support of these projects
the spaceborne SI-traceable calibrators for Reflective Solar Bands (RSBs) and Thermal Emissive Bands (TEBs) is developing. In the middle of the next five years
we can complete the development of the principle prototype of the radiometric benchmark instruments
and then achieve a comprehensive performance verification.Comparing to its counterparts
China could more likely become the first country to launch radiometric benchmark satellite
which leads remote sensing satellites to a SI-traceable era.
空间辐射测量基准卫星溯源技术
space radiometric measurementbenchmarksatellitetraceabletechnique
Fox N, Green P, Brindley H, Russell J, Smith D, Lobb D, Cutter M and Barnes A. 2014. Traceable radiometry underpinning terrestrial and heliostudies (TRUTHS): a bencmark mission for climate//Proceedings of the SPIE 10563, International Conference on Space Optics. Tenerife: SPIE: 1056325 [DOI: 10.1117/12.2304220http://dx.doi.org/10.1117/12.2304220]
Fox N P, Aiken J, Barnett J J, Briottet X, Carvell R, Frohlich C, Groom S B, Hagolle O, Haigh J D, Kieffer H H, Lean J, Pollock D B, Quinn T, Sandford M C W, Schaepman M, Shine K P, Schmutz W K, Teillet P M, Thome K J, Verstraete M M and Zalewski E. 2003. Traceable Radiometry Underpinning Terrestrial- and Helio-studies (TRUTHS). Advances in Space Research, 32(11): 2253-2261 [DOI: 10.1016/S0273-1177(03)90551-5http://dx.doi.org/10.1016/S0273-1177(03)90551-5]
Gao D Y, Hu Y B, Liu Y, Guo Y Y, Xia M P, Li J J and Zheng X B. 2016. Photoelectric detection efficiency calibration of double channel self-calibration radiation reference source. Acta Optica Sinica, 36(11): 1130001
高冬阳, 胡友勃, 刘岩, 郭园园, 夏茂鹏, 李健军, 郑小兵. 2016. 双通道自校准光谱辐射源光电探测效率的定标. 光学学报, 36(11): 1130001 [DOI: 10.3788/AOS201636.1130001http://dx.doi.org/10.3788/AOS201636.1130001]
Hao X P, Sun J P, Gong L Y, Song J, Gu J M and Ding L. 2018. Research on H500-type high-precision vacuum blackbody as a calibration standard for infrared remote sensing. International Journal of Thermophysics, 39(4): 51 [DOI: 10.1007/s10765-018-2371-6http://dx.doi.org/10.1007/s10765-018-2371-6]
Hao X P, Sun J P, Xu C Y, Wen P, Song J, Xu M, Gong L Y, Ding L and Liu Z L. 2017. Miniature fixed points as temperature standards for in situcalibration of temperature sensors. International Journal of Thermophysics, 38(6): 90 [DOI: 10.1007/s10765-017-2223-9http://dx.doi.org/10.1007/s10765-017-2223-9]
Hu Y B, Li J J, Gao D Y and Zheng X B. 2020. Absolute radiance measurement based on correlated photons calibration. The European Physical Journal D, 74(1): 8 [DOI: 10.1140/epjd/e2019-100294-7http://dx.doi.org/10.1140/epjd/e2019-100294-7]
IPCC. 2001. Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press: 881
IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC: 151
Lu N M and Gu S Y. 2016. Review and prospect on the development of meteorological satellites. Journal of Remote Sensing, 20(5): 832-841
卢乃锰, 谷松岩. 2016. 气象卫星发展回顾与展望. 遥感学报, 20(5): 832-841 [DOI: 10.11834/jrs320166194http://dx.doi.org/10.11834/jrs320166194]
Murphy J M, Sexton D M H, Barnett D N, Jones G S, Webb M J, Collins M and Stainforth D A. 2004. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430(7001): 768-772 [DOI: 10.1038/nature02771http://dx.doi.org/10.1038/nature02771]
Ohring G, Tansock J, Emery W, Butler J, Flynn L, Weng F Z, Germain K S, Wielicki B, Cao C Y, Goldberg M, Xiong J, Fraser G, Kunkee D, Winker D, Miller L, Ungar S, Tobin D, Anderson J G, Pollock D, Shipley S, Thurgood A, Kopp G, Ardanuy P and Stone T. 2007. Achieving satellite instrument calibration for climate change. Transactions American Geophysical Union, 88(11): 136 [DOI: 10.1029/2007EO110015http://dx.doi.org/10.1029/2007EO110015]
Ohring G, Wielicki B, Spencer R, Emery B and Datla R (eds), 2004,Satellite Instrument Calibration for Measuring
Global Climate Change, Report of a Workshop, NIST Publication NISTIR 7047, 101 pp.
Song B Q, Ye X, Yang D J, Jiang M and Fang W. 2015. Precise measurement of voltages in space cryogenic radiation temperature system. Editorial Office of Optics and Precision Engineering, 23(7): 1903-1910
宋宝奇, 叶新, 杨东军, 姜明, 方伟. 2015. 空间低温辐射计中的精密电压测量系统. 光学 精密工程, 23(7): 1903-1910 [DOI: 10.3788/OPE.20152307.1903http://dx.doi.org/10.3788/OPE.20152307.1903]
Song J, Hao X P, Yuan Z D, Liu Z L, Xu M and Ding L. 2015. Blackbody source emissivity measurement method based on controlling surroundings radiation. Chinese Journal of Lasers, 42(9): 0908005
宋健, 郝小鹏, 原遵东, 刘曾林, 许敏, 丁雷. 2015. 基于控制环境辐射的黑体辐射源发射率测量方法研究. 中国激光, 42(9): 0908005 [DOI: 10.3788/LOP42.0908005http://dx.doi.org/10.3788/LOP42.0908005]
Tang Q, Li J J, Li C, Zhai W C, Hu Y B and Zheng X B. 2019. Opto-mechanical design of self-calibraiton Radiometric reference source prototype based on spontaneous parametric down-conversion. Acta Photonica Sinica, 48(2): 0222002
汤琪, 李健军, 李琛, 翟文超, 胡友勃, 郑小兵. 2019. 基于参量下转换自校准辐射基准源原理样机的光机设计. 光子学报, 48(2): 0222002 [DOI: 10.3788/gzxb20194802.0222002http://dx.doi.org/10.3788/gzxb20194802.0222002]
Trenberth K E and Fasullo J T. 2010. Tracking Earth’s energy. Science, 328(5976): 316-317 [DOI: 10.1126/science.1187272http://dx.doi.org/10.1126/science.1187272]
Wang Y P, Hu X Q, Wang H R, Ye X and Fang W. 2015. Standard transfer chain for radiometric calibration of optical sensing instruments with traceability in solar reflective bands. Editorial Office of Optics and Precision Engineering, 23(7): 1807-1812
王玉鹏, 胡秀清, 王红睿, 叶新, 方伟. 2015. 可在轨溯源的太阳反射波段光学遥感仪器辐射定标基准传递链路. 光学精密工程, 23(7): 1807-1812 [DOI: 10.3788/OPE.20152307.1807http://dx.doi.org/10.3788/OPE.20152307.1807]
Wielicki B A, Young D F, Mlynczak M G, Thome K J, Leroy S, Corliss J, Anderson J G, Ao C O, Bantges R, Best F, Bowman K, Brindley H, Butler J J, Collins W, Dykema J A, Doelling D R, Feldman D R, Fox N, Huang X, Holz R, Huang Y, Jin Z, Jennings D, Johnson D G, Jucks K, Kato S, Kirk-Davidoff D B, Knuteson R, Kopp G, Kratz D P, Liu X, Lukashin C, Mannucci A J, Phojanamongkolkij N, Pilewskie P, Ramaswamy V, Revercomb H, Rice J, Roberts Y, Roithmayr C M, Rose F, Sandford S, Shirley E L, Smith W L, Soden B, Speth P W, Sun W, Taylor P C, Tobin D and Xiong X. 2013. Achieving climate change absolute accuracy in orbit. Bulletin of the American Meteorological Society, 94(10): 1519-1539 [DOI: 10.1175/BAMS-D-12-00149.1http://dx.doi.org/10.1175/BAMS-D-12-00149.1]
Wu D, Wang K, Ye X, Wang Y P and Fang W. 2019. Space cryogenic absolute radiometer. Chinese Journal of Luminescence, 40(8): 1015-1021
吴铎, 王凯, 叶新, 王玉鹏, 方伟. 2019. 空间低温绝对辐射计研究. 发光学报, 40(8): 1015-1021
Xia M P, Li J J, Hu Y B, Sheng W Y, Gao D Y, Pang W W and Zheng X B. 2015. Spectral properties of entangled photon pairs generated via quasi-phased-matched spontaneous parametric down-conversion. Chinese Optics Letters, 13(11): 113001
Ye X, Yi X L, Fang W, Wang K, Luo Y, Xia Z W and Wang Y P. 2018. Design and investigation of absolute radiance calibration primary radiometer. IET Science, Measurement and Technology, 12(8): 994-1000 [DOI: 10.1049/iet-smt.2018.5127http://dx.doi.org/10.1049/iet-smt.2018.5127]
Yi X L, Fang W, Li Y F, Ye X and Wang Y P. 2016. New calibration method of solar irradiance absolute radiometer. Infrared and Laser Engineering, 45(9): 0917001
衣小龙, 方伟, 李叶飞, 叶新, 王玉鹏. 2016. 太阳辐照度绝对辐射计的定标新方法. 红外与激光工程, 45(9): 0917001 [DOI: 10.3788/IRLA201645.0917001http://dx.doi.org/10.3788/IRLA201645.0917001]
相关作者
相关机构