Temporal and distribution characteristic of CO2 concentration over China based on GOSAT satellite data
- Vol. 24, Issue 3, Pages: 319-325(2020)
DOI: 10.11834/jrs.20208324
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
邓安健,郭海波,胡洁,姜成桢,刘培更,荆海峰.2020.GOSAT卫星数据监测中国大陆上空CO2浓度时空变化特征.遥感学报,24(3): 319-325
Deng A J, Guo H B, Hu J, Jiang C Z, Liu P G and Jing H F. 2020. Analysis of temporal and distribution characteristic of CO2 concentration over China based on GOSAT satellite data. Journal of Remote Sensing(Chinese), 24(3): 319-325
中国地区大气CO,2,浓度对全球气候变化有重要的影响。本文基于日本GOSAT卫星短波红外CO,2,的长期观测数据,对2010年—2016年中国大陆上空CO,2,浓度的分布特征和变化趋势进行分析研究。利用高精度的地基TCCON站点CO,2,观测对GOSAT CO,2,数据进行精度验证,结果表明,GOSAT CO,2,具有较高的精度,相对TCCON CO,2,的偏差为-1.04±2.10 ppm,两者的相关系数高达0.90;利用中国地区7年的GOSAT CO,2,观测数据分析研究显示,CO,2,浓度高值主要分布在中国的浙江—江苏—安徽地区、京津冀地区和湖南—湖北—河南—陕西地区;截至2016年,中国大部地区CO,2,浓度超过400 ppm;中国大陆CO,2,平均浓度呈现明显的逐年增长趋势,从2010年的387.76 ppm增长到2016年的402.18 ppm,年增长率约为2.31 ppm/a,略高于同期全球平均水平。
Atmospheric CO,2, concentration over China has significant effects on the global climate change. To reliably predict the impact of atmospheric CO,2, on global climate change, it is necessary to clarify the distribution and variation of atmospheric CO,2, concentration. Based on long term short-wavelength infrared CO,2, dataset observed by GOSAT, the temporal variation and spatial distribution characteristics and variation trend of atmospheric CO,2, concentration was investigated and analysed over China during 2010 to 2016. To ensure the quality of GOSAT CO,2, dataset used in this paper, the GOSAT XCO,2, dataset was validated with high precise XCO,2, from ground-based TCCON sites. Multi-year mean of XCO,2, was illustrated to show the spatial heterogeneity of CO,2, concentration over China. Interannual variation and annual growth of XCO,2, was also presented and discussed. The results showed that GOSAT XCO,2, dataset was biased by -1.04±2.10 ppm with respect to TCCON XCO,2, and the correlation coefficient was 0.90 between them. Seven years (2010~2016) of GOSAT CO,2, dataset showed that high CO,2, concentrations were mainly located in Zhejiang-Jiangsu-Anhui region, Beijing-Tianjin-Hebei region, and Hunan-Hubei-Henan-Shanxi region in China. The CO,2, concentration reached 400 ppm over most regions in China until 2016. The annual average of CO,2, concentration showed an increase trend year by year over China, increasing from 387.76 in 2010 to 402.18 ppm in 2016. The annual growth rate of CO,2, concentration was evaluated to be 2.31 ppm/a during this period over China, which was slightly higher than the average in the world. This paper shows that the CO,2, concentration observations from satellites could provide some references for the climate change response strategies and atmospheric environment control.
CO2浓度分布模式CO2年增长率中国大陆GOSAT卫星
CO2 concentrationdistribution patternannual growth rate of CO2China mainlandGOSAT
Bai W G, Zhang X Y, Zhang P. 2010. Temporal and distribution of tropospheric CO2 over China based on satellite observation. Chinese Science Bulletin, 55(30): 2953-2960
白文广,张兴赢,张鹏. 2010. 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析. 科学通报, 55(30): 2953-2960
Bu R, Lei L P, Guo L J, Liu D and Zeng Z C. 2015. Analysis of temporal and spatial potential applications of satellite remote sensing of atmospheric CO2 concentration monitoring. Journal of Remote Sensing, 19 (1) : 34-45 [DOI: 10.11834/jrs.20154031]
布然, 雷莉萍, 郭丽洁, 刘达, 曾招城. 2015. 大气CO2浓度时空变化卫星遥感监测的应用潜力分析. 遥感学报, 19 (1) : 34-45
Chevallier F. 2007. Impact of correlated observation errors on inverted CO2 surface fluxes from OCO measurements. Geophysical Research Letters, 34(24), L24804.
Chen L F, Zhang Y, Zou M M, Xu Q, Li L J, Li X Y and Tao J H. 2015. Overview of atmospheric CO2 remote sensing from space. Journal of Remote Sensing, 19 (1) : 1-11 [DOI: 10.11834/jrs.20153331http://dx.doi.org/10.11834/jrs.20153331]
陈良富, 张莹, 邹铭敏, 徐谦, 李令军, 李小英, 陶金花. 2015. 大气CO2浓度卫星遥感进展. 遥感学报, 19 (1) : 1-11
Gurney K.R., Law R.M., Denning A.S., et al. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415, 626-629.
Houweling S., Breon F.M., Aben I., et al. 2004. Inverse modeling of CO2 sources and sinks using satellite data: A synthetic inter-comparison of measurement techniques and their performance as a function of space and time. Atmospheric Chemistry and Physics, 4, 523-538.
Hungershoefer K., Breon F.-M., Peylin P., et al. 2010. Evaluation of various observing systems for the global monitoring of CO2 surface fluxes. Atmospheric Chemistry and Physics, 10, 503-520.
IPCC (Intergovernmental Panel on Climate Change), Solomon S., Qin D., Manning M., et al. 2007. Climate change 2007: The physical science basis, contribution of working group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge (UK), New York (USA).
IPCC (Intergovernmental Panel on Climate Change). 2013. Climate Change 2013: The Physical Science Basis, Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, USA.
Kuze A., Suto H., Nakajima M., et al. 2009. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics , 48(35), 6716-6733.
Miller C.E., Crisp D., DeCola P.L., et al. 2007. Precision requirements for space-based XCO2 data. Journal of Geophysical Research-atmospheres, 112, D10314.
Morino I., Uchino O., Inoue M., et al. 2011. Preliminary validation of column-averaged volume mixing rations of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmospheric Measurement Techniques, 4, 1061-1076.
Qu Yan, Zhang Chunmin, Wang Dingyi, et al. 2013. Comparison of atmospheric CO2 observed by GOSAT and two ground stations in China. International Journal of Remote Sensing, 34(11): 3938-3946.
Rayner P.J., and O’Brien D.M. 2001. The utility of remotely sensed CO2 concentration data in surface source inversions. Geophysical Research Letters. 28(1), 175-178.
Rodgers C.D. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, Singapore, 81-99.
Schneising O., Buchwitz M., Reuter M. et al. 2011. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmosphere Chemistry and Physics, 11: 2863-2880.
Stephens B.B., Gurney K.R., Tans P.P., et al. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316, 1732-1735.
Wang G C, Wen Y P, Kong Q L, et al. 2002. The background concentration and variation of CO2 over Chinese mainland. Chinese Science Bulletin, 47(10): 780-783
王庚辰, 温玉璞, 孔琴心, 等. 2002. 中国大陆上空CO2的本底浓度及其变化. 科学通报, 47(10): 780-783
Wang J N, Cai B F, Cao D, et al. 2014. China 10 km carbon dioxide emissions grid dataset and spatial characteristic analysis. China Environmental Science, 34(1): 1~6
王金南,蔡博峰,曹东等. 2014. 中国10km二氧化碳排放格网及空间特征分析. 中国环境科学, 34(1): 1~6
C. Le Quere, M. Moriarty, R. M. Andrew, et al., WMO (World Meteorological Organization), 2015. Global Carbon budget 2015. Earth System Science Data, 7, 349-396, 2015.
Wunch D., Toon G.C., Wennberg P.O., et al. 2010. Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmospheric Measurement Techniques, 3, 1351-1362.
Wunch D., Toon G.C., Blavier J.F.L.,et al. 2011. The Total Carbon Column Observing Network. Philosophical Transactions Of The Society A-Mathematical Physical And Engineering Sciences, 369, 2087-2112.
Yoshida Y., Ota Y., Eguchi N., et al. 2011. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmospheric Measurement Techniques, 4, 717-734.
Yoshida Y., Kikuchi N., Morino I., et al. 2013. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and CH4 and their validation using TCCON data. Atmospheric Measurement Techniques, 6, 1533-1547.
Zhang Huifang, Chen Baozhang, Xu Guang, et al. 2015. Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals. Science Bulletin, 60(3): 380-386.
相关作者
相关机构