Deep learning-based super-resolution for GF-4 satellite imagery
- Vol. 24, Issue 12, Pages: 1500-1510(2020)
Published: 07 December 2020
DOI: 10.11834/jrs.20208397
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 December 2020 ,
扫 描 看 全 文
贺智,贺丹.2020.基于深度学习的高分四号卫星图像超分辨率重建.遥感学报,24(12): 1500-1510
He Z and He D. 2020. Deep learning-based super-resolution for GF-4 satellite imagery. Journal of Remote Sensing(Chinese), 24(12):1500-1510
针对高分四号卫星图像中波红外谱段空间分辨率远低于相应的可见光近红外谱段,提出一种基于深度学习的高分四号卫星图像中波红外谱段超分辨率重建方法。首先,设计卷积回归网络进行初步重建,利用8倍下采样的可见光近红外谱段和原始中波红外谱段训练回归网络。然后,设计卷积重建网络进行进一步重建,利用低分辨率初步重建结果和原始中波红外谱段训练重建网络。最后,将原始可见光近红外谱段依次输入到训练好的回归网络和重建网络,得到最终的中波红外谱段超分辨率重建结果。以湖北和江西部分地区真实数据进行试验,结果表明该方法能有效提高中波红外谱段空间分辨率,与其他方法对比均方根误差至少下降了7.54,且目视效果更清晰自然,有利于扩展高分四号卫星的应用范围。
GF-4 is a geostationary orbit satellite launched under the support of the major special project of China’s high-resolution earth observation system. Notably
the spatial resolution of the medium-wave infrared channel in GF-4 satellite imagery is much lower than the corresponding visible near-infrared channels of the same scene. The resolution of the medium-wave infrared channel needs to be improved.
In this study
a deep learning method termed as GF-4 Super-Resolution Network (GF-4-SRN) is proposed for super-resolution GF-4 satellite imagery. First
a convolutional regression network is designed for preliminary reconstruction of the original image. The convolutional regression network is trained using eight times down-sampled visible near-infrared channels and the original low-resolution medium-wave infrared channel. Thus
the correspondence between the visible near-infrared channels and the medium-wave infrared channel is developed. Second
a convolutional reconstruction network is designed to further reconstruct the preliminary results. This network is trained using the low-resolution preliminary reconstruction results and the original medium-wave infrared image. Notably
the convolutional reconstruction network can build the relationship between the preliminary reconstruction results and the medium-wave infrared image. Finally
the original visible near-infrared channels in GaoFen-4 satellite imagery are fed into the trained GF-4-SRN. The final super-resolution reconstruction results can be obtained by the relationship between visible near-infrared images and the medium-wave infrared image.
Experiments are performed on two real-world GF-4 satellite images acquired from Hubei and Jiangxi regions. Experimental results demonstrate that the proposed GF-4-SRN method can effectively enhance the spatial resolution of the medium-wave infrared image. Compared with the root mean square error of state-of-the-art methods
that of the GF-4-SRN is reduced by at least 7.54. Moreover
the visual effects are much clearer and more natural. Therefore
the GF-4-SRN contributes to expanding the application range of the GF-4 satellite imagery.
This paper proposes a deep learning-based super-resolution method for GF-4 satellite imagery. The proposed GF-4-SRN is composed of preliminary reconstruction by convolutional regression network and further reconstruction by convolutional reconstruction network. Experimental results on Hubei and Jiangxi regions demonstrate the effectiveness of the proposed GF-4-SRN. The spatial resolution is increased by fully utilizing the information provided by the visible near-infrared images. The root mean square error
erreur relative globale adimensionnelle de synthèse
and spectral angle mapper are lower than those of other methods. Meanwhile
the peak signal-to-noise ratio is higher than those of the competitors. Moreover
the visual effect of the results provided by the GF-4-SRN is much clearer and the reconstruction results contain more details. Notably
the deep learning-based method has great potential in super-resolution GF-4 satellite imagery.
In the future
we will improve the GF-4-SRN by adopting various window sizes in the convolutional kernel. The network connection mode and optimization method can also be changed to improve the speed and performance of the network. The GF4-SRN will also be extended to other application areas
such as disaster monitoring.
高分四号超分辨率影像重建深度学习卷积神经网络湖北江西
GF-4super-resolutionreconstructiondeep learningconvolutional networksHubeiJiangxi
Aiazzi B, Baronti S, Selva M. 2007. Improving component substitution pansharpening through multivariate regression of MS+Pan data. IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3230-3239 [DOI: 10.1109/TGRS.2007.901007http://dx.doi.org/10.1109/TGRS.2007.901007]
Bevilacqua M, Roumy A, Guillemot C, Alberi-Morel M L. 2012. Low-complexity single-image super-resolution based on nonnegative neighbor embedding//British Machine Vision Conference. Surrey: BMVA Press: 1-10 [DOI: 10.5244/C.26.135http://dx.doi.org/10.5244/C.26.135]
Chen X Y, Zhang J, Cui T W and Song P J. 2018. Extraction of the green tide drift velocity in the Yellow Sea based on GF-4. Acta Oceanologica Sinica, 40(1): 29-38
陈晓英, 张杰, 崔廷伟, 宋平舰. 2018. 基于高分四号卫星的黄海绿潮漂移速度提取研究. 海洋学报, 40(1): 29-38 [DOI: 10.3969/j.issn.0253-4193.2018.01.004http://dx.doi.org/10.3969/j.issn.0253-4193.2018.01.004]
Dong C, Loy C C, He K M and Tang X O. 2016. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2): 295-307 [DOI: 10.1109/TPAMI.2015.2439281http://dx.doi.org/10.1109/TPAMI.2015.2439281]
Gerchberg R W. 1974. Super-resolution through error energy reduction. Optica Acta: International Journal of Optics, 21(9): 709-720 [DOI: 10.1080/713818946http://dx.doi.org/10.1080/713818946]
Guo J, Ji C D, Yang J and Meng Q Y. 2018. Edge detection technique for GF-4 satellite imagery. Remote Sensing Information, 33(3): 108-115
郭敬, 吉长东, 杨健, 孟庆岩. 2018. 针对高分四号卫星影像的边缘检测技术. 遥感信息, 33(3): 108-115 [DOI: 10.3969/j.issn.1000-3177.2018.03.017http://dx.doi.org/10.3969/j.issn.1000-3177.2018.03.017]
Kim J, Lee J K and Lee K M. 2016. Accurate image super-resolution using very deep convolutional networks//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 1646-1654 [DOI: 10.1109/CVPR.2016.182http://dx.doi.org/10.1109/CVPR.2016.182]
Köhler T, Brost A, Mogalle K, Zhang Q Y, Köhler C, Michelson G, Hornegger J and Tornow R P. 2014. Multi-frame super-resolution with quality self-assessment for retinal fundus videos//Proceedings of the 17th International Conference on Medical Image Computing and Computer-Assisted Intervention. Boston: Springer: 650-657 [DOI: 10.1007/978-3-319-10404-1_81http://dx.doi.org/10.1007/978-3-319-10404-1_81]
Li X, Wei H W and Zhang H Q. 2018. Super-resolution reconstruction of single remote sensing image combined with deep learning. Journal of Image and Graphics, 23(2): 209-218
李欣, 韦宏卫, 张洪群. 2018. 结合深度学习的单幅遥感图像超分辨率重建. 中国图象图形学报, 23(2): 209-218 [DOI: 10.11834/jig.170194http://dx.doi.org/10.11834/jig.170194]
Liao W Z, Huang X, Van Coillie F, Gautama S, Pižurica A, Philips W, Liu H, Zhu T T, Shimoni M, Moser G and Tuia D. 2015. Processing of multiresolution thermal hyperspectral and digital color data: outcome of the 2014 IEEE GRSS data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 2984-2996 [DOI: 10.1109/JSTARS.2015.2420582http://dx.doi.org/10.1109/JSTARS.2015.2420582]
Meng X C, Shen H F, Yuan Q Q, Li H F, Zhang L P and Sun W W. 2019. Pansharpening for cloud-contaminated very high-resolution remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57(5): 2840-2854 [DOI: 10.1109/TGRS.2018.2878007http://dx.doi.org/10.1109/TGRS.2018.2878007]
Nie J, Deng L, Hao X L, Liu M and He Y. 2018. Application of GF-4 satellite in drought remote sensing monitoring: a case study of Southeastern Inner Mongolia. Journal of Remote Sensing, 22(3): 400-407
聂娟, 邓磊, 郝向磊, 刘明, 贺英. 2018. 高分四号卫星在干旱遥感监测中的应用. 遥感学报, 22(3): 400-407 [DOI: 10.11834/jrs.20187067http://dx.doi.org/10.11834/jrs.20187067]
Pi Y D, Yang B and Li X. 2016. Block-adjustment and accuracy validation for GF4 patch-images based on RFM. Acta Geodaetica et Cartographica Sinica, 45(12): 1448-1454
皮英冬, 杨博, 李欣. 2016. 基于有理多项式模型的GF4卫星区域影像平差处理方法及精度验证. 测绘学报, 45(12): 1448-1454 [DOI: 10.11947/j.AGCS.2016.20160262http://dx.doi.org/10.11947/j.AGCS.2016.20160262]
Song T, Gong S Q, Liu J Z, Gu Z F, Shi J Z and Wu W. 2018. Performance assessment of atmospheric correction for multispectral data of GF-4 on inland case II Turbid water. Spectroscopy and Spectral Analysis, 38(4): 1191-1197
宋挺, 龚绍琦, 刘军志, 顾征帆, 石浚哲, 吴蔚. 2018. 浑浊二类水体的高分四号卫星大气校正效果分析. 光谱学与光谱分析, 38(4): 1191-1197) [DOI: 10.3964/j.issn.1000-0593(201804-1191-07http://dx.doi.org/10.3964/j.issn.1000-0593(2018)04-1191-07]
Sun Y J, Wang Z H, Qin Q M, Han G H, Ren H Z and Huang J F. 2018. Retrieval of surface albedo based on GF-4 geostationary satellite image data. Journal of Remote Sensing, 22(2): 220-233
孙越君, 汪子豪, 秦其明, 韩谷怀, 任华忠, 黄敬峰. 2018. 高分四号静止卫星数据的地表反照率反演. 遥感学报, 22(2): 220-233 [DOI: 10.11834/jrs.20186428http://dx.doi.org/10.11834/jrs.20186428]
Tian Y P, Zhou F, Yang W M, Shang X S and Liao Q M. 2016. Anchored neighborhood regression based single image super-resolution from self-examples//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix: IEEE: 2827-2831 [DOI: 10.1109/ICIP.2016.7532875http://dx.doi.org/10.1109/ICIP.2016.7532875]
Wang D Z and He H Y. 2017. Observation capability and application prospect of GF-4 satellite. Spacecraft Recovery and Remote Sensing, 38(1): 98-106
王殿中, 何红艳. 2017. “高分四号”卫星观测能力与应用前景分析. 航天返回与遥感, 38(1): 98-106 [DOI: 10.3969/j.issn.1009-8518.2017.01.013http://dx.doi.org/10.3969/j.issn.1009-8518.2017.01.013]
Wang M, Cheng Y F, Chang X L, Long X X and Li Q P. 2017. High accuracy on-orbit geometric calibration of geostationary satellite GF4. Acta Geodaetica et Cartographica Sinica, 46(1): 53-61
王密, 程宇峰, 常学立, 龙小祥, 李庆鹏. 2017. 高分四号静止轨道卫星高精度在轨几何定标. 测绘学报, 46(1): 53-61 [DOI: 10.11947/j.AGCS.2017.20160300http://dx.doi.org/10.11947/j.AGCS.2017.20160300]
Wang Z T, Zhang Y H, Yuan S Y, Zhao S H, Zhou C Y, Chen H and Ma P F. 2016. The aerosol monitoring over Beijing-Tianjin-Hebei region from GF-4 data. Environment and Sustainable Development, (5): 113-116
王中挺, 张玉环, 袁淑云, 赵少华, 周春艳, 陈辉, 马鹏飞. 2016. 利用高分四号数据监测“京津冀”地区陆地气溶胶. 环境与可持续发展, (5): 113-116 [DOI: 10.3969/j.issn.1673-288X.2016.05.033]
Xu J P, Liang Y H, Liu J and Huang Z F. 2017. Multi-frame super-resolution of Gaofen-4 remote sensing images. Sensors, 17(9): 2142 [DOI: 10.3390/s17092142http://dx.doi.org/10.3390/s17092142]
Xu L N and He L X. 2017. GF-4 images super resolution reconstruction based on POCS. Acta Geodaetica et Cartographica Sinica, 46(8): 1026-1033
许丽娜, 何鲁晓. 2017. 基于凸集投影的高分四号卫星影像超分辨率重建. 测绘学报, 46(8): 1026-1033 [DOI: 10.11947/j.AGCS.2017.20170070http://dx.doi.org/10.11947/j.AGCS.2017.20170070]
Yang G, Shen H F, Sun W W, Li J L, Diao N H and He Z Y. 2018. On the generation of gapless and seamless daily surface reflectance data. IEEE Transactions on Geoscience and Remote Sensing, 56(8): 4289-4306 [DOI: 10.1109/TGRS.2018.2810271http://dx.doi.org/10.1109/TGRS.2018.2810271]
Zeyde R, Elad M and Protter M. 2010. On single image scale-up using sparse-representations//Proceedings of the 7th International Conference on Curves and Surfaces. Avignon: Springer: 711-730 [DOI: 10.1007/978-3-642-27413-8_47http://dx.doi.org/10.1007/978-3-642-27413-8_47]
Zhang Z X, Shao Y, Tian W, Wei Q F, Zhang Y Z and Zhang Q J. 2017. Application potential of GF-4 images for dynamic ship monitoring. IEEE Geoscience and Remote Sensing Letters, 14(6): 911-915 [DOI: 10.1109/LGRS.2017.2687700http://dx.doi.org/10.1109/LGRS.2017.2687700]
相关文章
相关作者
相关机构