Fine mineral identification of GF-5 hyperspectral image
- Vol. 24, Issue 4, Pages: 454-464(2020)
Published: 07 April 2020
DOI: 10.11834/jrs.20209194
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 April 2020 ,
扫 描 看 全 文
董新丰,甘甫平,李娜,闫柏琨,张磊,赵佳琪,于峻川,刘镕源,马燕妮.2020.高分五号高光谱影像矿物精细识别.遥感学报,24(4): 454-464
DONG Xinfeng,GAN Fuping,LI Na,YAN Bokun,ZHANG Lei,ZHAO Jiaqi,YU Junchuan,LIU Rongyuan,MA Yanni. 2020. Fine mineral identification of GF-5 hyperspectral image. Journal of Remote Sensing(Chinese). 24(4): 454-464
矿物识别是高光谱遥感技术优势之一,已在地质矿产领域取得了显著应用效果。随着光谱分辨率的不断提高,高光谱遥感矿物识别逐渐从识别矿物种类向矿物亚类、矿物成分等精细信息识别发展,且随着应用实践的不断深入,对矿物精细信息的需求也越来越大。而光谱分辨率和矿物识别方法是制约高光谱矿物精细识别的主要因素。高分五号(GF-5)超高的光谱分辨率为矿物精细识别提供了可能。首先在分析总结已有高光谱矿物识别方法优缺性的基础上,提出了综合光谱特征增强匹配度和特征参量的矿物识别方法;其次,选取甘肃柳园和美国Cuprite两个研究较多的地区为研究对象,基于GF-5卫星数据开展了矿物精细识别,在完成矿物种类、亚类识别的基础上,进一步对绢云母成分信息进行了反演;最后,结合上述地区已有机载高光谱数据及填图结果开展对比分析。结果表明:GF-5矿物识别信息分布与机载HyMap、AVIRIS一致性很好,相较机载数据GF-5矿物识别平均正确率优于90%,说明本研究提出的矿物识别方法能够满足GF-5矿物精细识别,可为后续业务化应用提供技术支撑,同时认为超高的光谱分辨率使得GF-5在矿物成分信息识别上更具优势。
Mineral identification
which is a feature of hyperspectral remote sensing technology
has been widely applied in geoscience and has achieved remarkable application results in geological and mineral fields. With the improvement of spectral resolution
mineral identification has gradually developed from the identification of mineral species to the identification of fine information
such as mineral subclasses and mineral components. Fine mineral information is extremely important in applications
such as the prediction and evaluation of mineral resources and geological environment indication. It directly affects the breadth and depth of hyperspectral remote sensing geological application. Spectral resolution and mineral identification methods are the main factors in fine mineral identification. GF-5 has 330 bands at the spectral range of 350—2500 nm
and its spectral resolution is higher than 10 nm. Its ultrahigh spectral resolution provides the possibility for fine mineral identification.
In this study
a mineral identification method was presented on the basis of spectral characteristic enhancement matching degree and characteristic parameters by summarizing and analyzing the advantages and disadvantages of two commonly used mineral identification methods
namely
spectral matching and characteristic parameters
and combining the characteristics of GF-5 hyperspectral data. The proposed method was applied to conduct mineral identification in Liuyuan
Gansu
and Cuprite
USA. The mineral types and subclasses were first identified
and then the information on sericite composition was reversed. The airborne hyperspectral data were compared with the mapping results of GF-5.
The results show that the GF-5 mineral identification information distribution has a good consistency with airborne HyMap and AVIRIS
and the average accuracy of GF-5 mineral identification is 90% higher compared with the airborne data. The accuracy rate
as a holistic evaluation
only serves as a reference because of the relatively limited statistical data
uneven distribution of mineral information
and the difference in original spatial resolution. The comparison results show that the proposed mineral identification method can meet the requirements of GF-5 mineral fine identification.
Ultrahigh spectral resolution makes GF-5 advantageous in the identification of mineral composition information and distinguishing minerals with high spectral similarity. The proposed mineral identification method based on spectral characteristic enhancement matching degree and characteristic parameters can provide technical support for subsequent operational applications.
高分五号高光谱短波红外矿物填图遥感地质
GF-5hyperspectralshortwave infraredmineral mappingremote sensing geology
Ashley R P and Abrams M J . 1980. Alteration mapping using Multispectral Images-Cuprite Mining District, Esmeralda County, Nevada. US Geological Survey Open File Report 80-367
Bierwirth P, Huston D and Blewett R . 2002. Hyperspectral mapping of mineral assemblages associated with gold mineralization in the Central Pilbara, Western Australia. Economic Geology, 97(4): 819-826 [DOI: 10.2113/gsecongeo.97.4.819http://dx.doi.org/10.2113/gsecongeo.97.4.819 ]
Boardman J W .1998. Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: mixture tuned matched filtering//Summaries of the Seventh JPL Airborne Geoscience Workshop. Pasadena, CA: JPL Publication
Chang C I . 2000. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Transactions on Information Theory, 46(5): 1927-1932 [DOI: 10.1109/18.857802http://dx.doi.org/10.1109/18.857802 ]
Chang Z S, Hedenquist J W, White N C, Cooke D R, Roach M, Deyell C L, Garcia Jr J, Gemmel J B, McKnight S and Cuison L A . 2011. Exploration tools for linked porphyry and epithermal deposits: example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8): 1365-1398 [DOI: 10.2113/econgeo.106.8.1365http://dx.doi.org/10.2113/econgeo.106.8.1365 ]
Cui J, Yan B K, Wang R S, Tian F, Zhao Y J, Liu D C, Yang S M and Shen W . 2014. Regional-scale mineral mapping using ASTER VNIR/SWIR data and validation of reflectance and mineral map products using airborne hyperspectral CASI/SASI data. International Journal of Applied Earth Observation and Geoinformation, 33: 127-141 [DOI: 10.1016/j.jag.2014.04.014http://dx.doi.org/10.1016/j.jag.2014.04.014 ]
Deyell C L and Dipple G M . 2005. Equilibrium mineral-fluid calculations and their application to the solid solution between alunite and natroalunite in the El Indio-Pascua belt of Chile and Argentina. Chemical Geology, 215(1/4): 219-234 [DOI: 10.1016/j.chemgeo.2004.06.039http://dx.doi.org/10.1016/j.chemgeo.2004.06.039 ]
Dong X F, Yan B K, Li N, Zhao Z, Liu G Y, Liu R Y and Chen Y W . 2018. Prospecting prediction of sedimentary metamorphic type iron deposits based on airborne hyperspectral remote sensing: a case study of the Jingtieshan area in the northern Qilian Mountains. Geology and Exploration, 54(5): 1013-1023
董新丰, 闫柏琨, 李娜, 赵哲, 刘根源, 刘镕源, 陈耀文. 等 . 2018. 基于航空高光谱遥感的沉积变质型铁矿找矿预测—以北祁连镜铁山地区为例. 地质与勘探, 54(5): 1013-1023 [DOI: 10.3969/j.issn.0495-5331.2018.05.012http://dx.doi.org/10.3969/j.issn.0495-5331.2018.05.012 ]
Fenstermaker L K,Miller J R . 1994. Identification of fluvially redistributed mill tailings using high spectral resolution aircraft data. Photogrammetric Engineering and Remote Sensing, 60(8): 989-995
Gan F P, Dong X F, Yan B K and Liang S N . 2018. Research progress of spectrometry geological remote sensing. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 10(1): 44-62
甘甫平, 董新丰, 闫柏琨, 梁树能 . 2018. 光谱地质遥感研究进展. 南京信息工程大学学报(自然科学版), 10(1): 44-62 [DOI: 10.13878/j.cnki.jnuist.2018.01.005http://dx.doi.org/10.13878/j.cnki.jnuist.2018.01.005 ]
Gan F P, Wang R S and Ma A N . 2003. Spectral identification tree(sit) for mineral extraction based on spectral characteristics of minerals. Earth Science Frontiers, 10(2): 445-454
甘甫平, 王润生, 马蔼乃 . 2003. 基于特征谱带的高光谱遥感矿物谱系识别. 地学前缘, 10(2): 445-454 [DOI: 10.3321/j.issn:1005-2321.2003.02.024http://dx.doi.org/10.3321/j.issn:1005-2321.2003.02.024 ]
Gan F P, Wang R S and Yang S M . 2002. Studying on the alteration minerals identification using Hyperion data. Remote Sensing for Land and Resources, 14(4): 44-50
甘甫平, 王润生, 杨苏明 . 2002. 西藏Hyperion数据蚀变矿物识别初步研究. 国土资源遥感, 14(4): 44-50 [DOI: 10.3969/j.issn.1001-070X.2002.04.010http://dx.doi.org/10.3969/j.issn.1001-070X.2002.04.010 ]
Goetz A F H . 2009. Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sensing of Environment, 113 (SI): S5-S16 [DOI: 10.1016/j.rse.2007.12.014http://dx.doi.org/10.1016/j.rse.2007.12.014 ]
Hedenquist J W, Arribas A R and Gonzalez-Urien E . 2000. Exploration for epithermal gold deposits//Hagemann S G and Brown P E, eds. Reviews in Economic Geology. Society of Economic Geologists: 245-277 [DOI: 10.5382/Rev.13.07]
Hook S J and Rast M . 1990. Mineralogic mapping using airborne visible/infrared imaging spectrometer (AVIRIS) shortwave infrared (SWIR) data acquired over cuprite, NV//Proceedings of the 2nd Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop. Pasadena, CA: JPL Published: 199-207.
Kruse F A, Perry S L and Caballero A . 2006. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina. Annals of Geophysics, 49(1): 83-92 [DOI: 10.4401/ag-3154http://dx.doi.org/10.4401/ag-3154 ]
Liang S N, Gan F P, Yan B K, Wang R S, Yang S M and Zhang Z J . 2012. Relationship between composition and spectral feature of muscovite. Remote Sensing for Land and Resources, 24(3): 111-115
梁树能, 甘甫平, 闫柏琨, 王润生, 杨苏明, 张志军 . 2012. 白云母矿物成分与光谱特征的关系研究. 国土资源遥感, 24(3): 111-115 [DOI: 10.6046/gtzyyg.2012.03.20http://dx.doi.org/10.6046/gtzyyg.2012.03.20 ]
Lin J, Yan B K, Dong X F, Yang S M, Yang R H, Cui J, Guo D and Wang R S . 2014. Evaluating of Tiangong-1 imaging spectrometer data oriented to geological applications. Journal of Remote Sensing, 18(S1): 74-83
林健, 闫柏琨, 董新丰, 杨苏明, 杨日红, 崔静, 郭鼎, 王润生 . 2014. 面向地质应用的天宫一号成像光谱数据评价. 遥感学报, 18(S1): 74-83 [DOI: 10.11834/jrs.2014z12http://dx.doi.org/10.11834/jrs.2014z12 ]
Liu D C, Tian F, Qiu J T, Ye F W, Yan B K, Sun Y and Wang Z T . 2017. Application of hyperspectral remote sensing in solid ore exploration in the Liuyuan-Fangshankou Area. Acta Geologica Sinica, 91(12): 2781-2795
刘德长, 田丰, 邱峻挺, 叶发旺, 闫柏琨, 孙雨, 王子涛 . 2017. 柳园-方山口地区航空高光谱遥感固体矿产探测及找矿效果. 地质学报, 91(12): 2781-2795 [DOI: 10.3969/j.issn.0001-5717.2017.12.014http://dx.doi.org/10.3969/j.issn.0001-5717.2017.12.014 ]
Rockwell B W, Cunningham C G, Breit G N and Rye R O . 2006. Spectroscopic mapping of the white horse alunite deposit, Marysvale Volcanic Field, Utah: evidence of a magmatic component. Economic Geology, 101(7): 1377-1395 [DOI: 10.2113/gsecongeo.101.7.1377http://dx.doi.org/10.2113/gsecongeo.101.7.1377 ]
Sun Y Z, Jiang G W, Li Y D, Yang Y, Dai H S, He J, Ye Q H, Cao Q, Dong C Z, Zhao S H and Wang W H . 2018. GF-5 satellite: overview and application prospects. Spacecraft Recovery and Remote Sensing, 39(3): 1-13
孙允珠, 蒋光伟, 李云端, 杨勇, 代海山, 何军, 叶擎昊, 曹琼, 董长哲, 赵少华, 王维和 . 2018. “高分五号”卫星概况及应用前景展望. 航天返回与遥感, 39(3): 1-13 [DOI: 10.3969/j.issn.1009-8518.2018.03.001http://dx.doi.org/10.3969/j.issn.1009-8518.2018.03.001 ]
Swayze G A, Clark R N, Goetz A F H, Livo K E and Sutley S S . 1998. Using imaging spectroscopy to better understand the hydrothermal and tectonic history of the cuprite mining District, Nevada//Summaries of the 7th JPL Airborne Earth Science Workshop. Pasadena, CA: JPL Publication: 383-384
Tan B X, Li Z Y, Chen E X and Pang Y . 2005. Preprocessing of EO-1 Hyperion hyperspectral data. Remote Sensing Information , (6): 36-41
谭炳香, 李增元, 陈尔学, 庞勇 . 2005. EO-1 Hyperion高光谱数据的预处理. 遥感信息 , (6): 36-41 [DOI: 10.3969/j.issn.1000-3177.2005.06.010http://dx.doi.org/10.3969/j.issn.1000-3177.2005.06.010 ]
van der Meer F . 2006. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 8(1): 3-17 [DOI: 10.1016/j.jag.2005.06.001http://dx.doi.org/10.1016/j.jag.2005.06.001 ]
van der Meer F D, van der Werff H M A, van Ruitenbeek F J A, Hecker C A, Bakker W H, Noomen M F, van der Meijde M, Carranza E J M, de Smeth J B and Woldai T . 2012. Multi-and hyperspectral geologic remote sensing: a review. International Journal of Applied Earth Observation and Geoinformation, 14(1): 112-128 [DOI: 10.1016/j.jag.2011.08.002http://dx.doi.org/10.1016/j.jag.2011.08.002 ]
Wang R S, Gan F P, Yan B K, Yang S M and Wang Q H . 2010. Hyperspectral mineral mapping and its application. Remote Sensing for Land ad Resources, 22(1): 1-13
王润生, 甘甫平, 闫柏琨, 杨苏明, 王清华 . 2010. 高光谱矿物填图技术与应用研究. 国土资源遥感, 22(1): 1-13 [DOI: 10.6046/gtzyyg.2010.01.01http://dx.doi.org/10.6046/gtzyyg.2010.01.01 ]
Wang R S, Yang S M and Yan B K . 2007. A review of mineral spectral identification methods and models with imaging spectrometer. Remote Sensing for Land and Resources, 19(1): 1-9
王润生, 杨苏明, 闫柏琨 . 2007. 成像光谱矿物识别方法与识别模型评述. 国土资源遥感, 19(1): 1-9 [DOI: 10.6046/gtzyyg.2007.01.01http://dx.doi.org/10.6046/gtzyyg.2007.01.01 ]
Yan B K, Dong X F, Wang Z, Yang S M, Yu J C, Li N and Gan F P . 2016. Mineral information extraction technology by airborne hyperspectral remote sensing and its application progress: an example of mineralization belts of western China. Geological Survey of China, 3(4): 55-62
闫柏琨, 董新丰, 王喆, 杨苏明, 于峻川, 李娜, 甘甫平 . 2016. 航空高光谱遥感矿物信息提取技术及其应用进展——以中国西部成矿带调查为例. 中国地质调查, 3(4): 55-62
Ye F W, Liu D C and Zhao Y J . 2011. Airborne hyper-spectral survey system CASI/SASI and its preliminary application in uranium exploration. World Nuclear Geoscience, 28(4): 231-236
叶发旺, 刘德长, 赵英俊 . 2011. CASI/SASI航空高光谱遥感测量系统及其在铀矿勘查中的初步应用. 世界核地质科学, 28(4): 231-236[DOI: 10.3969/j.issn.1672-0636.2011.04.008http://dx.doi.org/10.3969/j.issn.1672-0636.2011.04.008 ]
Yuhas R H, Goetz F H A and Boardman J W . 1992. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm//Summaries of the 3rd Annual JPL Airborne Geoscience Workshop. Pasadena, CA: JPL Publication: 147-149
相关文章
相关作者
相关机构